Quantum fingerprinting
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Classical fingerprinting associates with each string a shorter string (its fingerprint), such that,
with high probability, any two distinct strings can be distinguished by comparing their fingerprints
alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing
the fingerprints share a random key, but not if they only have access to uncorrelated random
sources. In this paper we show that fingerprints consisting of quantum information can be made
exponentially smaller than the original strings without any correlations or entanglement between
the parties. In our scheme, the fingerprints are exponentially shorter than the original strings and a
measurement distinguishes between the fingerprints of any two distinct strings. Our scheme implies
an exponential quantum /classical gap for the equality problem in the simultaneous message passing
model of communication complexity. We optimize several aspects of our scheme.

Fingerprinting can be a useful mechanism for deter-
mining if two strings are the same: each string is asso-
ciated with a much shorter fingerprint and comparisons
between strings are made in terms of their fingerprints
alone. This can lead to savings in the communication
and storage of information.

The notion of fingerprinting arises naturally in the set-
ting of communication complezity (see [11]). The partic-
ular model of communication complexity that we con-
sider in this paper is called the simultaneous message
passing model, which was introduced by Yao [16] in his
original paper on communication complexity. In this
model, two parties—Alice and Bob—receive inputs z and
y, respectively, and are not permitted to communicate
with one another directly. Rather they each send a mes-
sage to a third party, called the referee, who determines
the output of the protocol based solely on the messages
sent by Alice and Bob. The collective goal of the three
parties is to cause the protocol to output the correct value
of some function f(z,y) while minimizing the amount of
information that Alice and Bob send to the referee.

For the equality problem, the function is simply

lifz=y
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The problem can of course be trivially solved if Alice
sends x and Bob sends y to the referee, who can then
simply compute f(z,y). However, the cost of this proto-
col is high; if z and y are n-bit strings, then a total of
2n bits are communicated. If Alice and Bob instead send
fingerprints of x and y, which may each be considerably
shorter than z and y, the cost can be reduced signifi-
cantly. The question we are interested in is how much
the size of the fingerprints can be reduced.

If Alice and Bob share a random O(log n)-bit key then
the fingerprints need only be of constant length if we al-
low a small probability of error; a brief sketch of this
follows. A binary error-correcting code is used, which
can be represented as a function E : {0,1}" — {0,1}™,
where E(z) is the codeword associated with = € {0,1}".
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There exist error-correcting codes (Justesen codes, for
instance) with m = cn such that the Hamming distance
between any two distinct codewords E(z) and E(y) is at
least (1 — &)m, where ¢ and ¢ are positive constants. For
the particular case of Justesen codes, we may choose any
¢ > 2 and we will have 6 < 9/10 + 1/(15¢) (assuming n
is sufficiently large). For further information on Justesen
codes, see Justesen [10] and MacWilliams and Sloane [13,
Chapter 10]. Now, for z € {0,1}" and i € {1,2,...,m},
let E;(z) denote the i*" bit of E(x). The shared key is a
randomi € {1,2,...,m} (which consists of log, (n)+0(1)
bits). Alice and Bob respectively send the bits F;(z) and
E;(y) to the referee, who then outputs 1 if and only if
E;(z) = E;(y). If x = y then E;(x) = E;(y), so then the
outcome is correct. If x # y then the probability that
E;(z) = E;(y) is at most J, so the outcome is correct
with probability 1 — 4. The error probability can be re-
duced from 0 to any € > 0 by having Alice and Bob send
O(log(1/€)) independent random bits of the codewords
E(z) and E(y) to the referee. In this case, the length of
each fingerprint is O(log(1/¢)) bits.

One disadvantage of the above scheme is that it re-
quires overhead in creating and maintaining a shared key.
Moreover, once the key is distributed, it must be stored
securely until the inputs are obtained. This is because
an adversary who knows the value of the key can easily
choose inputs « and y such that x # y but for which the
output of the protocol always indicates that = = y.

Yao [16, Section 4.D] posed as an open problem the
question of what happens in this model if Alice and Bob
do not have a shared key. Ambainis [1] proved that finger-
prints of O(y/n) bits suffice if we allow a small error prob-
ability (see also [6,12,15]). Note that in this setting Alice
and Bob still have access to random bits, but there are
no correlations between each others random bits. Subse-
quently, Newman and Szegedy [15] proved the above is
optimal in that the length of the fingerprints must scale
at least proportionally to y/n. Babai and Kimmel [6]
later showed that probabilistic and deterministic com-
munication complexity can be at most quadratically far



apart for any function in the simultaneous message pass-
ing model, which also implies the \/n lower bound. Babai
and Kimmel attribute a simplified proof of this fact to
Jean Bourgain and Avi Wigderson.

We consider the problem where Alice and Bob’s fin-
gerprints can consist of quantum information. Alice and
Bob are still restricted to have no shared key (or entan-
glement) between them. We show that O(logn)-qubit
fingerprints are sufficient to solve the equality problem in
this setting—an exponential improvement over the /n-
bound for the comparable classical case. Our method
is to set the 2" fingerprints to quantum states whose
pairwise inner-products are bounded below 1 in absolute
value and to use a special measurement that identifies
identical fingerprints and distinguishes distinct finger-
prints with good probability. This gives a simultaneous
message passing protocol for equality in the obvious way:
Alice and Bob send the fingerprints of their respective in-
puts to the referee, who then performs the measurement
that checks if the fingerprints are equal or distinct.

The fact that quantum systems contain large sets
of nearly-orthogonal states—sets of 2" states that are
nearly orthogonal pairwise in O(logn)-qubit systems—is
well known. For example, it is noted in [2], where it is
shown that these nearly-orthogonal sets of states cannot
be utilized to solve certain coding problems much more
efficiently than possible with classical information. Our
results are perhaps the first demonstration that nearly-
orthogonal sets of quantum states can be used to perform
a natural information processing task significantly more
efficiently than possible with classical information.

To explicitly construct a large set of nearly-orthogonal
quantum states, assume that for fixed c > 1and 0 < § <
1 we have an error correcting code E : {0,1}" — {0,1}™
for each n, where m = cn and such that the distance
between distinct codewords E(z) and E(y) is at least
(1 = §)m. For instance, we may use the codes discussed
previously in the classical shared-key protocol. Now, for
each z € {0,1}", define the (log(m) + 1)-qubit state |h,)
as
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Since two distinct codewords can be equal in at most dm
positions, for any x # y we have (h,|hy) < dm/m = 0.
Thus we have 2™ different (log,(n) + O(1))-qubit states,
and each pair of them has inner-product with absolute
value at most 9.

The simultaneous message passing protocol for the
equality problem works as follows. When given n-bit
inputs « and y, respectively, Alice and Bob send fin-
gerprints |h,) and |hy) to the referee. Then the referee
must distinguish between the case where the two states
received—call them |¢) and |¢)—are identical or have
inner-product at most § in absolute value. This is accom-
plished with one-sided error probability by the procedure
that measures and outputs the first qubit of the state
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Here H is the Hadamard transform, which maps |[b) —
%(|0) + (=1)°|1)), SWAP is the operation |@)[s)) —
[t} @) and c-SWAP is the controlled-SWAP (controlled
by the first qubit). A quantum circuit for this procedure
is illustrated in Figure 1.
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FIG. 1. Circuit to test if |¢) = |¢) or |[(P|)| < o

Tracing through the execution of this circuit, the final
state before the measurement is

510) (D)) + [¥)|9)) + 31 (I9)W) — [¥)g))-  (4)

Measuring the first qubit of this state produces outcome
1 with probability 3 — £[(¢[¢)|?. This probability is 0
if # = y and is at least (1 —42)/2 > 0 if # # y. Thus,
the test determines which case holds with one-sided error
probability (14 §2)/2.

The error probability of the test can be reduced to any
g > 0 by setting the fingerprint of z € {0,1}" to |h,)®*
for a suitable k € O(log(1/¢)). From such fingerprints,
the referee can independently perform the test in Figure 1
k times, resulting in an error probability below e. In this
case, the length of each fingerprint is O((log n)(log(1/¢)).

It is worth considering what goes wrong if one tries
to simulate the above quantum protocol using classical
mixtures in place of quantum superpositions. In such
a protocol, Alice and Bob send (i, E;(z)) and (4, E;(y))
respectively to the referee for independent random uni-
formly distributed i,j5 € {1,2,...,m}. If it should hap-
pen that ¢ = j then the referee can make a statistical
inference about whether or not « = y. But i = j oc-
curs with probability only O(1/n)—and the ability of the
referee to make an inference when i # j seems difficult.
For many error-correcting codes, no inference whatsoever
about x = y is possible when ¢ # j and the lower bound
in [15] implies that no error-correcting code enables in-
ferences to be made when i # j with error probability
bounded below 1. The distinguishing test in Figure 1
can be viewed as a quantum operation that has no anal-
ogous classical probabilistic counterpart.

Our quantum protocol for equality in the simultane-
ous message model uses O(logn)-qubit fingerprints for
any constant error probability. Is it possible to use fewer
qubits? In fact, without a shared key, logarithmic-length
fingerprints are necessary. This is because any k-qubit



quantum state can be specified within exponential preci-
sion with O(k2*) classical bits. Therefore the existence
of a k-qubit quantum protocol implies the existence of an
O(k2*)-bit (deterministic) classical protocol. From this
we can infer that k > clog, n for some constant ¢ > 0.

We next consider some efficiency improvements to our
fingerprinting scheme. It can be shown that the afore-
mentioned method uses k(log,(n) + O(1)) qubit finger-
prints to attain an error probability slightly more than
(9/10)%. First we note that the construction of nearly-
orthogonal states can be improved by using a better
error-correcting code. Using a probabilistic argument, it
can be shown that, for an arbitrarily small 6 > 0, there
exists an error-correcting code E : {0,1}" — {0,1}™
with m € log,(n) + O(log(1/d)) such that the Hamming
distance between any two distinct codewords E(z) and
E(y) is between 3 (1 —0)m and §(1+ d8)m. The idea is to
show that if 2" m bit strings are chosen randomly then
the probability that any two of them has Hamming dis-
tance more than %6m away from %m is less than 1. An
extensive survey of such probabilistic arguments can be
found in [3]. Note that this existence proof does not yield
an explicit construction of the code; however, given such
a code, the logm-qubit fingerprint of z € {0,1}" can be
defined as
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It is straightforward to show that, for any =z # y,
(B Iy < 6.

The above construction yields fingerprints that are
arbitrarily close to orthogonal—their pairwise inner-
products are within any § > 0 of 0 provided the qubit-
length of the fingerprints is set to log,(n) +O(1/4). This
results in a distinguishing measurement (Figure 1) that
errs with probability of (1 + §2)/2—slightly more than
%. To reduce the error-probability to an arbitrarily small
e > 0, recall that the method we proposed is to con-
struct k copies of each fingerprint, which can then be
measured in pairs independently. The result is an er-
ror probability of ((1 + ¢2)/2)¥, which is approximately
1/2F when § is small. We now show that an alter-
nate measurement results in an error probability close to
Vk((1+6)/2)%*, which is approximately v/7k/4* when
0 is small. This is a near-quadratic reduction in the error
probability resulting from a k-copy fingerprint consisting
of k(log,(n) + O(1)) qubits.

The improved measurement for the state distinguish-
ing problem works as follows. Let Ri,...,Rop be reg-
isters that initially contain |@),...,|®),[|¥),...,|¥) (k
copies of each). Let P be a resister whose classical states
include encodings of all the permutations in Sor. Let 0
encode the identity permutation and let P be initialized
to 0. Let F' be any transformation satisfying
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Such a transformation can easily be computed in poly-
nomial time.
The distinguishing procedure operates as follows:

1. Apply F to register P.

2. Apply a conditional permutation on the contents of
registers Ry, ..., Roy, conditioned on the permuta-
tion specified in P.

3. Apply F' to P and measure the final state. If P
contains 0 then answer equal, otherwise answer not
equal.

The state after Step 2 is
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(where o(|@) -+ |P)|9p) -+ - 1)) means we permute the
contents of the 2k registers according to o).

Case 1: |¢) = |¢). In this case the permutation of the
registers does absolutely nothing, so the procedure an-
swers equal with certainty.

Case 2: Assume [(¢|))| < &. The probability of answer-
ing equal is the squared norm of the vector obtained by
applying the projection |0)(0|®I to the final state, which
is
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Finally, we consider briefly the case of fingerprinting
where Alice and Bob have a shared quantum key, con-
sisting of O(logn) Bell states, but are required to out-
put classical strings as fingerprints. Is there any sense
in which a quantum key can result in improved perfor-
mance over the case of a classical key? We observe that
results in [4] imply an improvement in the particular set-
ting where the fingerprinting scheme must be exact (i.e.,
the error probability is 0) and where there is a restriction
on the inputs that either z = y or the Hamming distance
between z and y is n/2 (and n is divisible by 4).

Under this restriction, any classical scheme with a
shared key would still require fingerprints of length lin-
ear in n. On the other hand, there is a scheme with a



shared quantum key of O(logn) Bell states that requires
fingerprints of length only O(logn) bits. See [4] for de-
tails (the results are partly based on results in [5,7]). It
should be noted that if the exactness condition is relaxed
to one where the error probability must be O(1/n°) (for a
constant ¢) then there exists also a classical scheme with
classical keys and fingerprints of length O(logn).
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