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Classi
al �ngerprinting asso
iates with ea
h string a shorter string (its �ngerprint), su
h that,

with high probability, any two distin
t strings 
an be distinguished by 
omparing their �ngerprints

alone. The �ngerprints 
an be exponentially smaller than the original strings if the parties preparing

the �ngerprints share a random key, but not if they only have a

ess to un
orrelated random

sour
es. In this paper we show that �ngerprints 
onsisting of quantum information 
an be made

exponentially smaller than the original strings without any 
orrelations or entanglement between

the parties. In our s
heme, the �ngerprints are exponentially shorter than the original strings and a

measurement distinguishes between the �ngerprints of any two distin
t strings. Our s
heme implies

an exponential quantum/
lassi
al gap for the equality problem in the simultaneous message passing

model of 
ommuni
ation 
omplexity. We optimize several aspe
ts of our s
heme.

Fingerprinting 
an be a useful me
hanism for deter-

mining if two strings are the same: ea
h string is asso-


iated with a mu
h shorter �ngerprint and 
omparisons

between strings are made in terms of their �ngerprints

alone. This 
an lead to savings in the 
ommuni
ation

and storage of information.

The notion of �ngerprinting arises naturally in the set-

ting of 
ommuni
ation 
omplexity (see [11℄). The parti
-

ular model of 
ommuni
ation 
omplexity that we 
on-

sider in this paper is 
alled the simultaneous message

passing model, whi
h was introdu
ed by Yao [16℄ in his

original paper on 
ommuni
ation 
omplexity. In this

model, two parties|Ali
e and Bob|re
eive inputs x and

y, respe
tively, and are not permitted to 
ommuni
ate

with one another dire
tly. Rather they ea
h send a mes-

sage to a third party, 
alled the referee, who determines

the output of the proto
ol based solely on the messages

sent by Ali
e and Bob. The 
olle
tive goal of the three

parties is to 
ause the proto
ol to output the 
orre
t value

of some fun
tion f(x; y) while minimizing the amount of

information that Ali
e and Bob send to the referee.

For the equality problem, the fun
tion is simply

f(x; y) =

�

1 if x = y

0 if x 6= y.

(1)

The problem 
an of 
ourse be trivially solved if Ali
e

sends x and Bob sends y to the referee, who 
an then

simply 
ompute f(x; y). However, the 
ost of this proto-


ol is high; if x and y are n-bit strings, then a total of

2n bits are 
ommuni
ated. If Ali
e and Bob instead send

�ngerprints of x and y, whi
h may ea
h be 
onsiderably

shorter than x and y, the 
ost 
an be redu
ed signi�-


antly. The question we are interested in is how mu
h

the size of the �ngerprints 
an be redu
ed.

If Ali
e and Bob share a random O(log n)-bit key then

the �ngerprints need only be of 
onstant length if we al-

low a small probability of error; a brief sket
h of this

follows. A binary error-
orre
ting 
ode is used, whi
h


an be represented as a fun
tion E : f0; 1g

n

! f0; 1g

m

,

where E(x) is the 
odeword asso
iated with x 2 f0; 1g

n

.

There exist error-
orre
ting 
odes (Justesen 
odes, for

instan
e) with m = 
n su
h that the Hamming distan
e

between any two distin
t 
odewords E(x) and E(y) is at

least (1� Æ)m, where 
 and Æ are positive 
onstants. For

the parti
ular 
ase of Justesen 
odes, we may 
hoose any


 > 2 and we will have Æ < 9=10 + 1=(15
) (assuming n

is suÆ
iently large). For further information on Justesen


odes, see Justesen [10℄ and Ma
Williams and Sloane [13,

Chapter 10℄. Now, for x 2 f0; 1g

n

and i 2 f1; 2; : : : ;mg,

let E

i

(x) denote the i

th

bit of E(x). The shared key is a

random i 2 f1; 2; : : : ;mg (whi
h 
onsists of log

2

(n)+O(1)

bits). Ali
e and Bob respe
tively send the bits E

i

(x) and

E

i

(y) to the referee, who then outputs 1 if and only if

E

i

(x) = E

i

(y). If x = y then E

i

(x) = E

i

(y), so then the

out
ome is 
orre
t. If x 6= y then the probability that

E

i

(x) = E

i

(y) is at most Æ, so the out
ome is 
orre
t

with probability 1� Æ. The error probability 
an be re-

du
ed from Æ to any " > 0 by having Ali
e and Bob send

O(log(1=")) independent random bits of the 
odewords

E(x) and E(y) to the referee. In this 
ase, the length of

ea
h �ngerprint is O(log(1=")) bits.

One disadvantage of the above s
heme is that it re-

quires overhead in 
reating and maintaining a shared key.

Moreover, on
e the key is distributed, it must be stored

se
urely until the inputs are obtained. This is be
ause

an adversary who knows the value of the key 
an easily


hoose inputs x and y su
h that x 6= y but for whi
h the

output of the proto
ol always indi
ates that x = y.

Yao [16, Se
tion 4.D℄ posed as an open problem the

question of what happens in this model if Ali
e and Bob

do not have a shared key. Ambainis [1℄ proved that �nger-

prints of O(

p

n) bits suÆ
e if we allow a small error prob-

ability (see also [6,12,15℄). Note that in this setting Ali
e

and Bob still have a

ess to random bits, but there are

no 
orrelations between ea
h others random bits. Subse-

quently, Newman and Szegedy [15℄ proved the above is

optimal in that the length of the �ngerprints must s
ale

at least proportionally to

p

n. Babai and Kimmel [6℄

later showed that probabilisti
 and deterministi
 
om-

muni
ation 
omplexity 
an be at most quadrati
ally far

1



apart for any fun
tion in the simultaneous message pass-

ing model, whi
h also implies the

p

n lower bound. Babai

and Kimmel attribute a simpli�ed proof of this fa
t to

Jean Bourgain and Avi Wigderson.

We 
onsider the problem where Ali
e and Bob's �n-

gerprints 
an 
onsist of quantum information. Ali
e and

Bob are still restri
ted to have no shared key (or entan-

glement) between them. We show that O(log n)-qubit

�ngerprints are suÆ
ient to solve the equality problem in

this setting|an exponential improvement over the

p

n-

bound for the 
omparable 
lassi
al 
ase. Our method

is to set the 2

n

�ngerprints to quantum states whose

pairwise inner-produ
ts are bounded below 1 in absolute

value and to use a spe
ial measurement that identi�es

identi
al �ngerprints and distinguishes distin
t �nger-

prints with good probability. This gives a simultaneous

message passing proto
ol for equality in the obvious way:

Ali
e and Bob send the �ngerprints of their respe
tive in-

puts to the referee, who then performs the measurement

that 
he
ks if the �ngerprints are equal or distin
t.

The fa
t that quantum systems 
ontain large sets

of nearly-orthogonal states|sets of 2

n

states that are

nearly orthogonal pairwise in O(log n)-qubit systems|is

well known. For example, it is noted in [2℄, where it is

shown that these nearly-orthogonal sets of states 
annot

be utilized to solve 
ertain 
oding problems mu
h more

eÆ
iently than possible with 
lassi
al information. Our

results are perhaps the �rst demonstration that nearly-

orthogonal sets of quantum states 
an be used to perform

a natural information pro
essing task signi�
antly more

eÆ
iently than possible with 
lassi
al information.

To expli
itly 
onstru
t a large set of nearly-orthogonal

quantum states, assume that for �xed 
 > 1 and 0 < Æ <

1 we have an error 
orre
ting 
ode E : f0; 1g

n

! f0; 1g

m

for ea
h n, where m = 
n and su
h that the distan
e

between distin
t 
odewords E(x) and E(y) is at least

(1� Æ)m. For instan
e, we may use the 
odes dis
ussed

previously in the 
lassi
al shared-key proto
ol. Now, for

ea
h x 2 f0; 1g

n

, de�ne the (log(m) +1)-qubit state jh

x

i

as

jh

x

i =

1

p

m

m

X

i=1

jiijE

i

(x)i: (2)

Sin
e two distin
t 
odewords 
an be equal in at most Æm

positions, for any x 6= y we have hh

x

jh

y

i � Æm=m = Æ.

Thus we have 2

n

di�erent (log

2

(n) +O(1))-qubit states,

and ea
h pair of them has inner-produ
t with absolute

value at most Æ.

The simultaneous message passing proto
ol for the

equality problem works as follows. When given n-bit

inputs x and y, respe
tively, Ali
e and Bob send �n-

gerprints jh

x

i and jh

y

i to the referee. Then the referee

must distinguish between the 
ase where the two states

re
eived|
all them j�i and j i|are identi
al or have

inner-produ
t at most Æ in absolute value. This is a

om-

plished with one-sided error probability by the pro
edure

that measures and outputs the �rst qubit of the state

(H 
 I)(
-SWAP)(H 
 I)j0ij�ij i: (3)

Here H is the Hadamard transform, whi
h maps jbi !

1

p

2

(j0i + (�1)

b

j1i), SWAP is the operation j�ij i !

j ij�i and 
-SWAP is the 
ontrolled-SWAP (
ontrolled

by the �rst qubit). A quantum 
ir
uit for this pro
edure

is illustrated in Figure 1.

j0i

j�i

j i

measure

H H

s

SWAP

FIG. 1. Cir
uit to test if j�i = j i or jh�j ij � Æ

Tra
ing through the exe
ution of this 
ir
uit, the �nal

state before the measurement is

1

2

j0i(j�ij i + j ij�i) +

1

2

j1i(j�ij i � j ij�i): (4)

Measuring the �rst qubit of this state produ
es out
ome

1 with probability

1

2

�

1

2

jh�j ij

2

. This probability is 0

if x = y and is at least (1 � Æ

2

)=2 > 0 if x 6= y. Thus,

the test determines whi
h 
ase holds with one-sided error

probability (1 + Æ

2

)=2.

The error probability of the test 
an be redu
ed to any

" > 0 by setting the �ngerprint of x 2 f0; 1g

n

to jh

x

i


k

for a suitable k 2 O(log(1=")). From su
h �ngerprints,

the referee 
an independently perform the test in Figure 1

k times, resulting in an error probability below ". In this


ase, the length of ea
h �ngerprint is O((logn)(log(1=")).

It is worth 
onsidering what goes wrong if one tries

to simulate the above quantum proto
ol using 
lassi
al

mixtures in pla
e of quantum superpositions. In su
h

a proto
ol, Ali
e and Bob send (i; E

i

(x)) and (j; E

j

(y))

respe
tively to the referee for independent random uni-

formly distributed i; j 2 f1; 2; : : : ;mg. If it should hap-

pen that i = j then the referee 
an make a statisti
al

inferen
e about whether or not x = y. But i = j o
-


urs with probability only O(1=n)|and the ability of the

referee to make an inferen
e when i 6= j seems diÆ
ult.

For many error-
orre
ting 
odes, no inferen
e whatsoever

about x = y is possible when i 6= j and the lower bound

in [15℄ implies that no error-
orre
ting 
ode enables in-

feren
es to be made when i 6= j with error probability

bounded below 1. The distinguishing test in Figure 1


an be viewed as a quantum operation that has no anal-

ogous 
lassi
al probabilisti
 
ounterpart.

Our quantum proto
ol for equality in the simultane-

ous message model uses O(log n)-qubit �ngerprints for

any 
onstant error probability. Is it possible to use fewer

qubits? In fa
t, without a shared key, logarithmi
-length

�ngerprints are ne
essary. This is be
ause any k-qubit

2



quantum state 
an be spe
i�ed within exponential pre
i-

sion with O(k2

k

) 
lassi
al bits. Therefore the existen
e

of a k-qubit quantum proto
ol implies the existen
e of an

O(k2

k

)-bit (deterministi
) 
lassi
al proto
ol. From this

we 
an infer that k � 
 log

2

n for some 
onstant 
 > 0.

We next 
onsider some eÆ
ien
y improvements to our

�ngerprinting s
heme. It 
an be shown that the afore-

mentioned method uses k(log

2

(n) + O(1)) qubit �nger-

prints to attain an error probability slightly more than

(9=10)

k

. First we note that the 
onstru
tion of nearly-

orthogonal states 
an be improved by using a better

error-
orre
ting 
ode. Using a probabilisti
 argument, it


an be shown that, for an arbitrarily small Æ > 0, there

exists an error-
orre
ting 
ode E : f0; 1g

n

! f0; 1g

m

with m 2 log

2

(n) +O(log(1=Æ)) su
h that the Hamming

distan
e between any two distin
t 
odewords E(x) and

E(y) is between

1

2

(1�Æ)m and

1

2

(1+Æ)m. The idea is to

show that if 2

n

m-bit strings are 
hosen randomly then

the probability that any two of them has Hamming dis-

tan
e more than

1

2

Æm away from

1

2

m is less than 1. An

extensive survey of su
h probabilisti
 arguments 
an be

found in [3℄. Note that this existen
e proof does not yield

an expli
it 
onstru
tion of the 
ode; however, given su
h

a 
ode, the logm-qubit �ngerprint of x 2 f0; 1g

n


an be

de�ned as

jh

x

i =

1

p

m

m

X

i=1

(�1)

E

i

(x)

jii: (5)

It is straightforward to show that, for any x 6= y,

jhh

x

jh

y

ij � Æ.

The above 
onstru
tion yields �ngerprints that are

arbitrarily 
lose to orthogonal|their pairwise inner-

produ
ts are within any Æ > 0 of 0 provided the qubit-

length of the �ngerprints is set to log

2

(n)+O(1=Æ). This

results in a distinguishing measurement (Figure 1) that

errs with probability of (1 + Æ

2

)=2|slightly more than

1

2

. To redu
e the error-probability to an arbitrarily small

" > 0, re
all that the method we proposed is to 
on-

stru
t k 
opies of ea
h �ngerprint, whi
h 
an then be

measured in pairs independently. The result is an er-

ror probability of ((1 + Æ

2

)=2)

k

, whi
h is approximately

1=2

k

when Æ is small. We now show that an alter-

nate measurement results in an error probability 
lose to

p

�k((1+ Æ)=2)

2k

, whi
h is approximately

p

�k=4

k

when

Æ is small. This is a near-quadrati
 redu
tion in the error

probability resulting from a k-
opy �ngerprint 
onsisting

of k(log

2

(n) +O(1)) qubits.

The improved measurement for the state distinguish-

ing problem works as follows. Let R

1

; : : : ; R

2k

be reg-

isters that initially 
ontain j�i; : : : ; j�i; j i; : : : ; j i (k


opies of ea
h). Let P be a resister whose 
lassi
al states

in
lude en
odings of all the permutations in S

2k

. Let 0

en
ode the identity permutation and let P be initialized

to 0. Let F be any transformation satisfying

F : j0i 7!

1

p

(2k)!

X

�2S

2k

j�i: (6)

Su
h a transformation 
an easily be 
omputed in poly-

nomial time.

The distinguishing pro
edure operates as follows:

1. Apply F to register P .

2. Apply a 
onditional permutation on the 
ontents of

registers R

1

; : : : ; R

2k

, 
onditioned on the permuta-

tion spe
i�ed in P .

3. Apply F

y

to P and measure the �nal state. If P


ontains 0 then answer equal, otherwise answer not

equal.

The state after Step 2 is

1

p

(2k)!

X

�2S

2k

j�i�(j�i � � � j�ij i � � � j i) (7)

(where �(j�i � � � j�ij i � � � j i) means we permute the


ontents of the 2k registers a

ording to �).

Case 1: j�i = j i. In this 
ase the permutation of the

registers does absolutely nothing, so the pro
edure an-

swers equal with 
ertainty.

Case 2: Assume jh�j ij < Æ. The probability of answer-

ing equal is the squared norm of the ve
tor obtained by

applying the proje
tion j0ih0j
I to the �nal state, whi
h

is
















1

p

(2k)!

X

�2S

2k

h0jF

y

j�i�(j�i � � � j�ij i � � � j i)
















2

(8)

=
















1

(2k)!

X

�2S

2k

�(j�i � � � j�ij i � � � j i)
















2

(9)

=

(k!)

2

(2k)!

k

X

j=0

�

k

j

�

2

Æ

2j

(10)

�

(k!)

2

(2k)!

(1 + Æ)

2k

(11)

�

p

�k

�

1 + Æ

2

�

2k

: (12)

Finally, we 
onsider brie
y the 
ase of �ngerprinting

where Ali
e and Bob have a shared quantum key, 
on-

sisting of O(log n) Bell states, but are required to out-

put 
lassi
al strings as �ngerprints. Is there any sense

in whi
h a quantum key 
an result in improved perfor-

man
e over the 
ase of a 
lassi
al key? We observe that

results in [4℄ imply an improvement in the parti
ular set-

ting where the �ngerprinting s
heme must be exa
t (i.e.,

the error probability is 0) and where there is a restri
tion

on the inputs that either x = y or the Hamming distan
e

between x and y is n=2 (and n is divisible by 4).

Under this restri
tion, any 
lassi
al s
heme with a

shared key would still require �ngerprints of length lin-

ear in n. On the other hand, there is a s
heme with a

3



shared quantum key of O(log n) Bell states that requires

�ngerprints of length only O(log n) bits. See [4℄ for de-

tails (the results are partly based on results in [5,7℄). It

should be noted that if the exa
tness 
ondition is relaxed

to one where the error probability must be O(1=n




) (for a


onstant 
) then there exists also a 
lassi
al s
heme with


lassi
al keys and �ngerprints of length O(log n).
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