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Abstract

This paper considers three variants of quantum interactive proof systems in which short
(meaning logarithmic-length) messages are exchanged between the prover and verifier. The
first variant is one in which the verifier sends a short message to the prover, and the prover
responds with an ordinary, or polynomial-length, message; the second variant is one in which
any number of messages can be exchanged, but where the combined length of all the messages
is logarithmic; and the third variant is one in which the verifier sends polynomially many
random bits to the prover, who responds with a short quantum message. We prove that in
all of these cases the short messages can be eliminated without changing the power of the
model, so the first variant has the expressive power of QMA and the second and third variants
have the expressive power of BQP. These facts are proved through the use of quantum state
tomography, along with the finite quantum de Finetti theorem for the first variant.

1 Introduction

The interactive proof system model extends the notion of efficient proof verification to an inter-
active setting, where a computationally unrestricted prover tries to convince a computationally
bounded verifier that an input string satisfies a particular fixed property. They have been stud-
ied extensively in computational complexity theory since their introduction roughly 25 years ago
[GMR85, GMR89, Bab85, BM88], and as a result much is known about them. (See [AB09] and
[Gol08], for instance, for further discussions of classical interactive proof systems.)

Quantum interactive proof systems are a natural quantum computational extension of the in-
teractive proof system model, where the prover and verifier can perform quantum computations
and exchange quantum information. The expressive power of quantum interactive proofs is no
different from classical interactive proofs: it holds that QIP = PSPACE = IP, and therefore any
problem having a quantum interactive proof system also has a classical one [JJUW09, LFKN92,
Sha92]. However, quantum interactive proof systems may be significantly more efficient than
classical interactive proofs in terms of the number of messages that are required by their interac-
tions, as every problem in PSPACE has a quantum interactive proof system requiring just three
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messages to be exchanged between a prover and verifier [KW00]. This is not possible classically
unless AM = PSPACE, which implies the collapse of the polynomial-time hierarchy [BM88, GS89].

In this paper, we consider quantum interactive proof systems in which some of the messages
are short, by which we mean that they have logarithmic length. In particular, we consider three
variants of quantum interactive proofs with short messages. The first variant is one in which
the verifier sends a short message to the prover, and the prover responds with an ordinary, or
polynomial-length, message. We prove that this model has the expressive power of QMA. The
second variant is one in which any number of messages can be exchanged between the prover
and verifier, but where the combined length of all the messages is logarithmic. We prove that
this model has the expressive power of BQP. The third variant is one in which the verifier sends
polynomially many random bits to the prover, who responds with a short quantum message. We
prove that this model also has the expressive power of BQP. Thus, in each of these three cases,
logarithmic-length messages are effectively worthless and can be removed without changing the
power of the model.

One possible application of our work is to the design of new quantum algorithms or QMA ver-
ification procedures. Although we do not yet have interesting examples, we believe it is possible
that an intuition about quantum interactive proof systems with short messages may lead to new
problems being shown to be in BQP or QMA, based on characterizations of the sort we prove.

The remainder of this paper has the following organization. Section 2 discusses some of the
background information needed for the rest of the paper, including background on the Choi–
Jamiołkowski representation of quantum channels, quantum state tomography, and quantum in-
teractive proof systems. Sections 3, 4, and 5 then discuss the three of quantum interactive proof
systems with short messages described above.

2 Background

We assume the reader is familiar with quantum information and computation, including the ba-
sic quantum complexity classes BQP and QMA, simple properties of mixed states, general mea-
surements, channels, and so on. The purpose of the present section is to highlight background
knowledge on three topics, represented by the three subsections below, that are particularly rele-
vant to this paper. These topics are: the Choi–Jamiołkowski representation of quantum channels,
quantum state tomography, and quantum interactive proof systems.

Before discussing these three topics, it is appropriate to mention a few simple points con-
cerning notation and terminology. Throughout this paper we let Σ = {0, 1} denote the binary
alphabet, and for each k ∈ N we write C(Σk) to denote the finite-dimensional Hilbert space of
vectors indexed by Σk (i.e., the Hilbert space associated with a k-qubit quantum register). The
Dirac notation is used to describe vectors in such a space.

For a given space Q = C(Σk), we write L (Q) to denote the space of all linear mappings from
Q to itself, which is associated with the space of all complex matrices with rows and columns
indexed by Σk in the usual way. The subset of this space representing the density operators on
Q is denoted D (Q). A standard inner product on L (Q) is defined as 〈X,Y〉 = Tr(X∗Y) for all
X,Y ∈ L (Q) (and where X∗ denotes the adjoint, or conjugate-transpose, of X). The trace norm of
X ∈ L (X ) is defined as

‖X‖1 = Tr
√
X∗X,

and the spectral (or operator) norm of X is denoted ‖X‖.
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2.1 Quantum channels and the Choi–Jamiołkowski representation

A quantum channel from a k-qubit space Q = C(Σk) to an l-qubit space R = C(Σl) is a completely
positive and trace-preserving linear mapping of the form

Φ : L (Q) → L (R) .

We will write C (Q,R) to denote the set of all such quantum channels. For any quantum channel
Φ ∈ C (Q,R) one defines the (normalized) Choi–Jamiołkowski representation of Φ as

ρ =
1

2k ∑
y,z∈Σk

Φ(|y〉〈z|) ⊗ |y〉〈z| . (1)

In other words, this is the l + k qubit state that results from applying Φ to one-half of k pairs of
qubits in the |φ+〉 = (|00〉 + |11〉)/

√
2 state.

The action of the mapping Φ can be recovered from its normalized Choi–Jamiołkowski repre-
sentation in the following way that makes use of post-selection. Suppose that Q and Q0 are k-qubit
registers and R is an l-qubit register, that the pair (R,Q0) is initialized to the state ρ as defined by
Φ in (1), and that Q is in an arbitrary quantum state (and is possibly entangledwith other registers
other than Q0 and R). Consider the following procedure:

1. Measure each qubit of Q together with its corresponding qubit in Q0 with respect to the Bell
basis.

2. If every one of these k measurements results in an outcome corresponding to the Bell state
|φ+〉, then output “success,” else output “failure.”

This procedure gives the outcome “success” with probability 4−k, and conditioned on success
the registerR is precisely as it would be had it resulted from the channel Φ being applied toQ. (The
registers Q and Q0 can safely be discarded if the procedure succeeds.) To see this, assume first that
the joint state of (R,Q0,Q) is ρ ⊗ ξ before the measurement takes place. Then the (unnormalized)
state of R after the measurements are performed, assuming the end result is “success,” is

1

22k
∑

y,y′,z,z′∈Σk

Φ(|y〉〈z|)〈y′|y〉〈z|z′〉〈y′|ξ|z′〉 =
1

4k
∑

y,z∈Σk

Φ (|y〉〈y| ξ |z〉〈z|) =
1

4k
Φ(ξ).

The probability of success is therefore 4−k, and conditioned on this outcome the process imple-
ments the channel Φ. The fact that this process implements the channel Φ exactly for all density
operators ξ implies that also operates correctly in the case that Q is entangled with any additional
registers.

2.2 Quantum state tomography

Quantum state tomography is the process by which an approximate description of an unknown
quantum state is obtained by measurements on many independent copies of the unknown state.
To be more precise, let Q = C(Σk) denote the space corresponding to a k-qubit register, and sup-
pose that X1, . . . ,XN are k-qubit quantum registers independently prepared in an unknown k-qubit
state ρ ∈ D (Q). The purpose of quantum state tomography is to obtain an explicit description of
a k-qubit state that closely approximates ρ.
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One way to perform quantum state tomography is through the use of an information-complete
measurement. Ameasurement {Pa : a ∈ Γ} on k-qubit registers is information-complete if and only
if the set {Pa : a ∈ Γ} spans the entire 4k-dimensional space L (Q). When such a measurement
is performed on a k-qubit state ρ, each measurement outcome is obtained with probability p(a) =
〈Pa, ρ〉. Based on the assumption that {Pa : a ∈ Γ} is information-complete, this vector p of
probabilities uniquely determines the state ρ. A close approximation of p, which may be obtained
by sufficiently many independent measurements, leads to an approximate description of ρ.

The accuracy of an approximation based on the process just described naturally depends on the
choice of an information-complete measurement as well as the specific notion of approximation
that is considered. Our interest will be on the trace distance ‖ρ − σ‖1 between the approximation
σ and the true state ρ. To describe the “quality” of an information-complete measurement, it
is appropriate to describe the specific process that is used to reconstruct ρ from the vector of
probabilities p.

For any spanning set {Pa : a ∈ Γ} of L (Q), there must exist at least one choice of a set
{Ma : a ∈ Γ} in L (Q) that satisfies

∑
a∈Γ

Ma 〈Pa,X〉 = X

for every X ∈ L (Q). (One may find such a set {Ma : a ∈ Γ} by solving a system of linear equa-
tions.) The set {Ma : a ∈ Γ} is uniquely determined when {Pa : a ∈ Γ} has exactly 4k elements
(i.e., is a basis), and hereafter we will restrict our attention to this case. If q is an approximation to
the vector of probabilities p, it holds that

∥

∥

∥

∥

∥

∑
a∈Γ

p(a)Ma − ∑
a∈Γ

q(a)Ma

∥

∥

∥

∥

∥

1

≤ ∑
a∈Γ

|p(a) − q(a)| ‖Ma‖1 ≤ ‖p− q‖1 max
a∈Γ

‖Ma‖1 ;

and it is therefore desirable that the maximum trace norm over the set {Ma : a ∈ Γ} determined
by the measurement {Pa : a ∈ Γ} is as small as possible.

There is one additional consideration that is sometimes relevant, which is that the approxima-
tion

∑
a∈Γ

q(a)Ma

may fail to be positive semidefinite, and therefore not represent a quantum state. In this situation
one can find a quantum state near to the approximation by renormalizing the positive part of
the approximation. For the applications of tomography in this paper, however, this issue may
safely be disregarded, as non-positive approximations of density operators will still provide valid
approximations to the quantities we are interested in.

An example of an information-complete measurement on a single qubit is given by the follow-
ing matrices:

P0 =

(

2+
√
2

8
1+i
8

1−i
8

2−
√
2

8

)

, P1 =

(

2−
√
2

8
1−i
8

1+i
8

2+
√
2

8

)

,

P2 =

(

2+
√
2

8
−1−i
8

−1+i
8

2−
√
2

8

)

, P3 =

(

2−
√
2

8
−1+i
8

−1+i
8

2+
√
2

8

)

.
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This is not an optimal information-complete measurement, but it has the advantage of being sim-
ple to describe and can be implemented exactly by a quantum circuit composed of Hadamard,
controlled-not, and π/8-phase gates. The corresponding set {M0,M1,M2,M3} described above is
given by

M0 =

(

1+
√
2

2 1+ i

1− i 1−
√
2

2

)

, M1 =

(

1−
√
2

2 1− i

1+ i 1+
√
2

2

)

,

M2 =

(

1+
√
2

2 −1− i

−1+ i 1−
√
2

2

)

, M3 =

(

1−
√
2

2 −1+ i

−1+ i 1+
√
2

2

)

.

It holds that ‖Ma‖1 =
√
10 < 4 for a ∈ Γ = {0, 1, 2, 3}.

An information-completemeasurement for k qubits may be obtained by taking tensor products
of the above matrices. More specifically, for each x ∈ Γk, let us define 2k × 2k matrices Px and Mx

as
Px = Px1 ⊗ · · · ⊗ Pxk and Mx = Mx1 ⊗ · · · ⊗ Mxk .

Then {Px : x ∈ Γk} is an information-complete measurement, and {Mx : x ∈ Γk} is its cor-
responding inverse measurement set. By the multiplicativity of the trace norm, it holds that
‖Mx‖1 = 10k/2 < 4k for every k.

Now, let us suppose that ρ is a quantum state on k qubits, and tomography (using the mea-
surements just described) is performed on N copies of ρ. More precisely, the measurement {Px} is
performed independently on each of the N copies of ρ, a probability distribution q : Γk → [0, 1] is
taken to be the frequency distribution of the outcomes, and an approximation

H = ∑
x∈Γk

q(x)Mx

to ρ is computed. We require a bound on the accuracy of this approximation. Of course, noth-
ing can be said in the worst case, as any sequence of measurement outcomes could occur with
very small probability in general. However, for any choice of ε > 0, taking N ≥ 212k/ε3 (for in-
stance) will guarantee that with probability at least 1− ε, the estimate H satisfies ‖ρ − H‖1 < ε.
(This bound, which sacrifices accuracy to give a simple expression, can be established by using
Chernoff-type bounds on the closeness of the frequency distribution q to the distribution defined
by the probabilities 〈Px, ρ〉, which are sampled independently by the measurements.)

The notion of quantum process tomography has also been considered, where a quantum mea-
surement or channel is approximated through many independent evaluations of an appropriate
sort. In this paper, however, it is not necessary to consider this sort of tomography as being any
different from state tomography. Specifically, we will approximate channels (and measurements,
modeled as channels) by evaluating them on maximally entangled states, followed by ordinary
quantum state tomography on the normalized Choi–Jamiołkowski representations that result.

2.3 Quantum interactive proofs

Quantum interactive proof systems are a natural quantum analogue of ordinary, classical inter-
active proof systems, where the prover and verifier may process and exchange quantum infor-
mation. We will only consider quantum interactive proof systems having an even number of
messages in this paper, so for simplicity we will restrict our discussion to this case.
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For t being a function of the form t : N → N, we define a t-round (or (2t)-message) quantum
verifier V to be a polynomial-time generated collection of quantum circuits

V =
{

Vx,j : x ∈ Σ∗, 0 ≤ j ≤ t(|x|)
}

.

We will generally write t rather than t(|x|) hereafter in this paper, keeping in mind that t might
vary with the input length. We assume that the verifier’s circuits are composed of standard unitary
quantum gates (controlled-not, Hadamard, and π/8-phase gates, let us say), as well as ancillary
and erasure gates. Included in the description of these circuits is a specification of which input and
output qubits are to be considered private memory qubits and which are considered message qubits.
The message qubits refer to qubits that are sent to or received from a prover (to be described
shortly). The following properties are required of the circuits describing a verifier:

1. For each x, the circuit Vx,0 takes no input qubits, and the circuit Vx,t produces a single output
qubit (called the acceptance qubit).

2. There exist functions v1, v2, . . . such that Vx,j−1 outputs vj(|x|) private memory qubits and Vx,j

inputs vj(|x|) private memory qubits for 1 ≤ j ≤ t.

3. There exist functions q1, q2, . . . and r1, r2, . . . that specify the number of message qubits the
verifier sends to or receives from the prover on each round, for a given input length. More
precisely, each circuit Vx,j−1 outputs qj(|x|) message qubits and each circuit Vx,j inputs rj(|x|)
message qubits, for 1 ≤ j ≤ t.

Similar to the function t, we will often omit the argument |x| from the functions vj, qj, and rj for
the sake of readability. When it is convenient, we will refer to the message qubits sent from the
verifier to the prover as question qubits and qubits sent from the prover to the verifier as response
qubits.

A t-round (or (2t)-message) prover is defined in a similar way to a t-round verifier, but no
computational restrictions are made. Specifically, a t-round prover is a collection of quantum
channels

P =
{

Px,j : x ∈ Σ∗, 1 ≤ j ≤ t
}

.

Again, the input and output qubits of these channels are specified as private memory qubits or
message qubits. When a particular prover P is considered to interact with a given verifier V, one
naturally assumes that they agree on the number of messages and the numbers of qubits sent in
each message, as suggested by Figure 1. We do not bother to assign any name to the number
of private memory qubits kept by the prover because we have no need to refer to this number
anywhere in the paper. While the number of private prover qubits could be arbitrarily large, it is
not advantageous for the prover to use more than a polynomial number of them.

Now, on a given input string x, the prover P and verifier V have an interaction by composing
their circuits/channels as described in Figure 1. The maximum acceptance probability for a given
verifierV on an input x refers to themaximum probability for the circuit Vx,t to output 1, assuming
it is measured in the standard basis, over all choices of a compatible prover P. It is always the case
that a maximal probability is achieved by some prover.

Classes of promise problemsmay be defined by quantum interactive proof systems in a variety
of ways. Wewill delay the definitions of the classes we consider to the individual sections in which
they are discussed.
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accept
or

reject
Vx,0 Vx,1 Vx,2 Vx,3

Px,1 Px,2 Px,3

q1 q2 q3r1 r2 r3

v1 v2 v3

Figure 1: An illustration of an interaction between a prover and verifier in a quantum interactive
proof system. In the picture it is assumed that t = 3. The labels vj, qj and rj on the arrows refer to
the number of qubits represented by each arrow.

3 Two-message quantum interactive proofs with short questions

The first specific variant of quantum interactive proof systems we consider are those in which just
a single round of communication takes place, with the first message being short (at most logarith-
mic length) and the second message being normal (at most polynomial length). In particular, let
us say that a 1-round verifier V is a [log, poly]-verifier if the number q = q1 of question qubits it
sends during the first and only round of communication satisfies q(n) = O(log n). For functions
of the form a, b : N → [0, 1] we define QIP([log, poly], a, b) to be the class of all promise prob-
lems B = (Byes, Bno) for which there exists a [log, poly] quantum verifier V with completeness
and soundness probability bounds a and b, respectively. In other words, V satisfies the following
properties:

1. For every string x ∈ Byes, there exists a prover P that convinces V to accept x with probability
at least a(|x|).

2. For every string x ∈ Bno, and every prover P compatible with V, it holds that P convinces V to
accept x with probability at most b(|x|).

For a wide range of choices of a and b, these classes coincide with QMA as the following theorem
states.

Theorem 1. Let a, b : N → (0, 1) be polynomial-time computable functions such that a(n) − b(n) ≥
1/p(n) for some polynomial p. Then QIP([log, poly], a, b) = QMA.

Proof. It is clear that QMA ⊆ QIP([log, poly], a, b) for any choice of a and b that satisfies the con-
ditions of the theorem, so our goal is to prove the reverse containment.

Let B = (Byes, Bno) be a promise problem in QIP([log, poly], a, b), and let V be a [log, poly]
verifier that witnesses this fact. Write q = q1 and r = r1 to denote the number of question qubits
the verifier sends and response qubits the verifier V receives, respectively. As V is a [log, poly]
verifier it holds that q(n) = O(log n). For a fixed input x, we will write Q = C(Σq) to denote the
question space andR = C(Σr) to denote the response space for V, corresponding to the question and
response qubits in the obvious way.

Our goal is to prove that B ∈ QMA, and to do this we will define a verification procedure
(Arthur) that demonstrates this fact. Suppose P is a prover that interacts with V. For a fixed input
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string x, the action of P may be identified with a quantum channel Φ ∈ C (Q,R), and any such
channel defines a quantum state ρ ∈ D (R⊗Q) according to its normalized Choi–Jamiołkowski
representation (1). We will define Arthur so that he expects to receive many independent copies
of this state. He will check its validity using quantum state tomography, and will use the state to
apply the mapping Φ himself through post-selection.

More specifically, we define Arthur so that he performs the following actions:

1. Receive N + m registers (R1,Q1), . . . , (RN+m,QN+m) from Merlin, where N and m are polyno-
mials in the input length n to be specified below.

2. Randomly permute the pairs (R1,Q1), . . . , (RN+m,QN+m), according to a uniformly chosen per-
mutation π ∈ SN+m, and discard all but the first N + 1 pairs.

3. Perform quantum state tomography on the registers (Q2, . . . ,QN+1), and reject if the resulting
approximation is not within δ/2 of the completely mixed state 1/2q, for δ to be specified below.

4. Simulate the original protocol (P,V) by post-selection using the register pair (R1,Q1). Reject if
the post-selection fails, and otherwise accept or reject as the outcome of the protocol dictates.

To specify N and δ, we first set

ε =
1

4 p 2q

for p being the polynomial whose reciprocal separates the completeness and soundness probabil-
ity bounds a and b. Now set

δ = ε2/4 and N =
212q

(δ/2)3
.

Suppose first that x ∈ Byes, which implies that there exists a prover P that causes V to accept
x with probability at least a. Let Φ denote the quantum channel that describes the behavior of P,
and let ρ be the normalized Choi–Jamiołkowski representation of Φ as described in (1). Then we
may defineMerlin so that he prepares each of the pairs (Rj,Qj) independently in the state ρ. Step 3
will reject with probability at most δ/2, and step 4 will accept with probability at least a/2q . Thus,
Arthur accepts with probability at least (1− δ/2)a/2q ≥ a/2q − δ/2.

Now let us suppose that x ∈ Bno, and consider the state of the registers (R1,Q1, . . . ,QN+1) after
steps 1 and 2 are performed by Arthur. Let us first assume that these registers are in a state of the
form

σ ⊗ ξ⊗N , (2)

where ξ is a q-qubit state and σ is a state of (R1,Q1) satisfying σ(Q1) = ξ. If it is the case that
‖ξ − 1/2q‖1 ≥ δ, then step 3 results in acceptance with probability at most δ/2. If, on the other
hand, ‖ξ − 1/2q‖1 < δ, then there must exist a state ρ of (R1,Q1) such that ρ(Q1) = 1/2q and
‖ρ − σ‖1 ≤ ε. Given that x ∈ Bno, the state ρ would cause acceptance in step 4 with probability at
most b/2q, and therefore σ causes acceptance with probability at most b/2q + ε. We therefore have
that the probability of acceptance is at most b/2q + ε for any state of the form (2).

Now in general, the state of (R1,Q1, . . . ,QN+1) after steps 1 and 2 have been performed may
not be of the form (2). However, it follows from the finite quantum de Finetti theorem [KR05,
CKMR07] that there exists a suitable choice of m, polynomial in δ and 2q, for which the state of
these registers is within trace distance ε of a convex combination of such states. By setting m in
this way, it follows that the probability of acceptance is at most b/2q + 2ε in the general case.

Given that a/2q − δ/2 and b/2q + 2ε are both efficiently computable and separated by the
reciprocal of a polynomial, it holds that B is in QMA as claimed.
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Vx,0 Vx,1 Vx,2 Vx,3 Vx,4

Px,1 Px,2 Px,3 Px,4

Figure 2: Illustration of a quantum interactive proof in which the messages are single bits.

4 Quantum interactive proofs with only short messages

Next we consider quantum interactive proof systems restricted so that the total number of qubits
exchanged by the prover and verifier is logarithmic. We prove that any problem having such a
quantum interactive proof system is contained in BQP. This fact represents a significant general-
ization of the equality QMAlog = BQP proved in [MW05]. Like the result of the previous section,
our proof of this fact is based on quantum state tomography. In addition we will make use of the
quantum games framework of [GW07].

It is clear that any quantum interactive proof system allowing at most a logarithmic num-
ber of qubits to be exchanged can be simulated by one in which a logarithmic number of single
qubit messages are permitted—because any number of these messages could consist of meaning-
less “dummy” qubits that are interspersed with the qubits sent by the other party. To be more
precise, let t(n) = O(log n) and consider a t-round quantum interactive proof system in which
each message consisting of a single qubit (i.e., q1 = r1 = · · · = qt = rt = 1). We will write
QIPlog(a, b) to denote the class of problems having quantum interactive proof systems of this sort
having completeness and soundness probability bounds a and b, respectively. As the following
theorem states, this model offers no computational advantage over BQP.

Theorem 2. Let a, b : N → (0, 1) be polynomial-time computable functions such that a(n) − b(n) ≥
1/p(n) for some polynomial p. Then QIPlog(a, b) = BQP.

Proof. It is clear that BQP ⊆ QIPlog(a, b), and so it remains to prove the reverse containment. To
this end let B = (Byes, Bno) be a promise problem in QIPlog(a, b), and let V be a verifier that wit-
nesses this fact. As above, let t(n) = O(log n) denote the number of rounds of communication this
verifier exchanges with any compatible prover. For a fixed input string x, we will writeQ1, . . . ,Qt

to denote copies of the Hilbert spaces C(Σ) associated with the t single-qubit messages that V
sends to a given prover P, and we will write R1, . . . ,Rt to denote copies of the same space C(Σ)
corresponding to the response qubits of P.

The action of V, on a given input string x, is determined by t+ 1 quantum circuits Vx,0, . . . ,Vx,t

as defined in Section 2. Figure 2 illustrates an interaction between V and a prover P for the case
that t = 4. Now consider the channel Φ obtained from the circuits Vx,0, . . . ,Vx,t by setting all of the
response qubits the verifier receives from the prover as input qubits and setting all of the ques-
tion qubits sent by the verifier to the prover as output qubits. Thus, Φ maps states on the space
R1 ⊗ · · · ⊗ Rt to states on the space Q1 ⊗ · · · ⊗ Qt ⊗A, where A denotes the single-qubit space
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Vx,0 Vx,1 Vx,2 Vx,3 Vx,4

σ

{







Φ(σ)

Figure 3: The channel Φ associated with the quantum interactive proof from Figure 2.

associated with the acceptance qubit. Figure 3 illustrates this channel for the protocol pictured in
Figure 2.

Next, let

ρ =
1

2t ∑
y,z∈Σt

|y〉〈z| ⊗ Φ(|y〉〈z|).

This is the normalized Choi–Jamiołkowski representation of Φ (with the input and output spaces
in reverse order from the presentation in Section 2.1). The state ρ is obviously efficiently preparable
given a description of V. By independently preparing N = 212t/ε3 copies of ρ, for ε > 0 to be
specified later, and performing quantum state tomography, one obtains a Hermitian operator H
on R1 ⊗ · · · ⊗ Rt ⊗Q1 ⊗ · · · ⊗ Qt ⊗A that satisfies ‖H − ρ‖1 < ε with probability at least 1− ε.
Let us also define

ρ1 = (1 ⊗ 〈1|) ρ (1 ⊗ |1〉) and H1 = (1 ⊗ 〈1|) H (1 ⊗ |1〉)
to denote the portion of these operators that correspond to the acceptance qubit A giving result 1
(accept).

Now, using themethods of [GW07], it can be shown that themaximum probability with which
V can be made to accept is given by the semidefinite program

maximize: 2t 〈ρ1,X〉
subject to: X ∈ St

where St ⊂ Pos (R1 ⊗ · · · ⊗Rt ⊗Q1 ⊗ · · · ⊗Qt) is defined recursively as S0 = 1 and

St = {X ≥ 0 : TrRt
(X) = Y ⊗ 1Qt

, Y ∈ St−1} .
(In other words, the set of operators St represent valid strategies for the prover.) It is clear that
Tr(X) = 2t for every X ∈ St, and therefore

∣

∣2t 〈ρ1,X〉 − 2t 〈H1,X〉
∣

∣ ≤ 2t ‖X‖ ‖ρ1 − H1‖1 ≤ 4t ‖ρ1 − H1‖1
for every X ∈ St. By taking

ε =
1

4t+1p

for instance, and substituting H1 for ρ1, one may therefore distinguish the cases x ∈ Ayes and
x ∈ Ano with probability 1− ε by performing tomography and solving the semidefinite program
described above.

10



We note that precisely the same argument allows one to conclude that quantum refereed games,
as defined in [GW07], allowing for at most a logarithmic number of qubits of communication
offer no computational power beyond BQP. In other words, QRGlog = BQP, for QRGlog defined
appropriately. The details are left to the reader.

5 Two-message quantum interactive proofs with short answers

In light of the results of Section 3, one may ask if two-message quantum interactive proofs with
short answers (as opposed to short questions) have the power of QMA or even BQP. If this is true it
is likely to be a difficult to show: the graph non-isomorphism problem, which is not known to be
in QMA, has a simple and well-known classical protocol [GMW91] requiring polynomial-length
questions and constant-length answers. (Indeed, every problem in QSZK has a two-message
quantum interactive proof system with a constant-length message from the prover to the verifier,
for any choice of constant completeness and soundness errors [Wat02].)

We can show, however, that public-coin quantum interactive proofs in which the verifier sends
polynomially many random bits to the prover, followed by a logarithmic-length quantum mes-
sage response from the prover, have only the power of BQP. (An analogous result for classical
interactive proof systems is obvious.)

Following a similar terminology to the classical case, we refer to a quantum interactive proof
system in which the verifier’s messages to the prover consist of uniformly-generated random bits
as quantum Arthur–Merlin games. Let us write QAM([poly, log], a, b) to denote the class of promise
problems having two-message quantum Arthur–Merlin games with completeness and soundness
probability bounds a and b, in which Merlin’s response to Arthur has logarithmic length.

Theorem 3. Let a, b : N → (0, 1) be polynomial-time computable functions such that a− b ≥ 1/p for
some polynomial-bounded function p. Then QAM([poly, log], a, b) = BQP.

Sketch of proof. Assume B is a promise problem in QAM([poly, log], a, b), and consider a choice
of Arthur that witnesses this fact. For r(n) = O(log n), and for any choice of an input string x,
Arthur chooses a random string y with length polynomial in |x|, and then measures r = r(|x|)
qubits send by Merlin with respect to some binary-valued measurement {Px

0 , P
x
1 } that depends

on x. This measurement may of course be described as a quantum channel

Φx(σ) = 〈Px
0 , σ〉 |0〉〈0| + 〈Px

1 , σ〉 |1〉〈1| ,

which is easily implemented given a description of Arthur.
Now, to prove B ∈ BQP, we consider a quantum algorithm that operates as follows:

1. Randomly choose y uniformly (just as Arthur does).

2. Let

ε =
1

2r+2p
and N =

212r

ε3
.

Prepare N copies of the state ρ, defined to be the normalized Choi–Jamiołkowski representa-
tion of Φx, and perform quantum state tomography of ρ. Let H denote the result.

3. Compute the value
α = 2r ‖(〈1| ⊗ 1)H(|1〉 ⊗ 1)‖ .

If α ≥ 1 then accept. Otherwise, accept with probability α and reject otherwise.
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This procedure has acceptance probability within 1/(4p) of the maximum acceptance probability
of Arthur, and therefore A ∈ BQP.
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