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Abstract

In this paper we analyze the behavior of quantum random walks. In particular we present
several new results for the absorption probabilities in systems with both one and two absorbing
walls for the one-dimensional case. We compute these probabilities both by employing gener-
ating functions and by use of an eigenfunction approach. The generating function method is
used to determine some simple properties of the walks we consider, but appears to have limi-
tations. The eigenfunction approach works by relating the problem of absorption to a unitary
problem that has identical dynamics inside a certain domain, and can be used to compute sev-
eral additional interesting properties, such as the time dependence of absorption. The eigen-
function method has the distinct advantage that it can be extended to arbitrary dimensionality.
We outline the solution of the absorption probability problem of a (D − 1)-dimensional wall in
a D-dimensional space.

1 Introduction

Several recent papers have studied the properties of quantum walks, which are quantum compu-
tational variants of discrete-time random walks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The behavior of
quantum walks differs from that of ordinary random walks in several striking ways, due to the
fact that quantum walks exhibit interference patterns whereas ordinary random walks do not.
For instance, mixing times, hitting times, and exit probabilities of quantum walks can differ sig-
nificantly from analogously defined random walks [1, 2, 3, 9]. One-dimensional quantum walks
are also relevant to quantum chaos [12]. In this paper we investigate the behavior of a class of
one-dimensional quantum walks that are very simple generalizations of the quantum walks intro-
duced in Refs. [6, 2].

Continuous-time variants of quantum walks have also been proposed and exhibit significant
differences from classical continuous random walks [13, 14]. However, we will not discuss this
model of quantum walks in this paper.

Ordinary random walks have had many applications in computer science, particularly as al-
gorithmic tools. Examples include randomized algorithms for graph connectivity, 2SAT, and ap-
proximating the permanent (see, for instance, Lovász [15] for several examples of algorithmic
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applications of random walks). Quantum walks have the potential to offer new tools for the de-
sign of quantum algorithms, which is one of the primary motivations for studying their behavior.
For example, given that quantum walks on certain simple structures mix faster or have faster hit-
ting times than random walks, there is the potential that they will admit quantum speed-ups for
algorithms based on random walks on more complicated structures.

One-dimensional quantum walks are not likely to be directly applicable to algorithm design.
Although there has been some work on quantum walks on general graphs [1], many questions
about quantum walks on general graphs appear to be quite difficult to answer at the present time.
Thus it is important to extend techniques developed to analyze one-dimensional quantum walks
to quantum walks on general graphs. To this end, we also investigate the behavior of quantum
walks in D dimensions.

Ref. [2] demonstrates that one-dimensional quantum walks differ qualitatively from classical
random walks. For example, this walk spreads with time as t instead of

√
t. Moreover, if the walk

is evolved in a system with one absorbing boundary, the probability of eventual absorption by the
wall is less than unity (in contrast to a classical unbiased one-dimensional random walk, where
this probability is unity). In this paper we generalize and extend the results of Ref. [2] and calcu-
late the absorption probabilities of one-dimensional quantum walks in systems with one and two
absorbing walls. We use a combinatorial method as well as an eigenfunction expansion method.
The combinatorial method is similar to that used in Ref. [2], and the eigenfunction method has
been used by others to address periodic systems [1, 2, 7, 8, 16, 12] as well as systems with potential
steps [7, 8]. Naturally the two methods agree perfectly in all cases in which results have been
obtained using both methods. We extend the eigenfunction method to general dimensionality.

1.1 Summary of results

First, for one-barrier systems, we obtain exact expressions for the probability of absorption by
the barrier, as a function of the initial distance to the barrier. Complementing these formulas
gives the probability of escape to infinity. These expressions involve integrals of different forms
coming from our two methods of analysis. Both forms allow asymptotic analysis of the absorption
probabilities; in particular, we compute the limiting probabilities when the initial distance to the
barrier is large. We do this both for Hadamard walks and for walks based on general unitary
transformations.

Next, for the two-barrier Hadamard system, we compute the long-time limit of the probability
of absorption by each barrier when the walker starts off very far from one barrier but an arbitrary
distance from the other barrier. Again, the expressions involve integrals whose asymptotic limits
are easily analyzed, so that we can compute the limiting probabilities when the initial distance to
both barriers is large. We then outline how the eigenfunction method can be used to analyze the
behavior in small systems. Then we use the eigenfunction method to analyze the time dependence
of the absorption in the limit of long times for walks with both one and two walls. We find that the
approach to the asymptotic limit is much slower when there are two walls, where the probability
remaining to be absorbed at time t decays as 1/

√
t, than when the system has one wall, where the

probability remaining to be absorbed at time t is proportional to 1/t2.
Finally, we study D-dimensional walks, and show that the region over which most of the

probability is distributed by time t has volume proportional to tD. We indicate how to solve the
problem of the absorption of a (D − 1)-dimensional wall without giving explicit results.
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1.2 Organization of the paper

In Section 2 we give definitions for one-dimensional quantum walks and for the specific processes
based on quantum walks that we consider. Section 3 presents our results based on the combina-
torial approach and Section 4 presents our results based on the eigenfunction method. Finally, in
Section 5 we analyze generalizations of one-dimensional quantum walks to higher dimensions.

2 Definitions

2.1 One-dimensional quantum walks

For any finite or countable set S we may denote by H(S) the Hilbert space of all square-summable
functions from S to the complex numbers C, along with the usual inner product. Using the
Dirac notation, the space H(S) has a standard basis {|s〉 : s ∈ S}, which is orthonormal. One-
dimensional quantum walks are discrete-time quantum processes on the space H(Z × {L, R}).
The standard basis for this space therefore consists of elements of the form |n, d〉, where n ∈ Z is
the location and d ∈ {L, R} is the direction component of such an element.

Given any unitary operator U on H({L, R}), define a unitary operator WU acting on H(Z ×
{L, R}) by

WU |n, d〉 = 〈L|U |d〉 |n − 1, L〉 + 〈R|U |d〉 |n + 1, R〉
for each standard basis state |n, d〉, and extending to all of H(Z × {L, R}) by linearity. Alternately
we may define WU = T(I ⊗ U), where T is defined by

T |n, L〉 = |n − 1, L〉 , T |n, R〉 = |n + 1, R〉 .

We use the term one-dimensional quantum walk to refer generally to any process involving the it-
eration of WU, since such processes are reminiscent of a particle doing a random walk on a one-
dimensional lattice.

We will also consider quantum walks on higher dimensional lattices in the final section of this
paper—definitions for this type of walk appear in that section.

2.2 Absorbing boundaries and exit probabilities

In this paper we will be interested in the situation in which our system is initialized to some state
and we alternately apply the operator WU and perform some measurement of the system. The
type of measurements we focus on are as follows. For each n ∈ Z, consider the projections Πn

yes

and Πn
no defined as

Πn
yes = |n, L〉 〈n, L|+ |n, R〉 〈n, R| , Πn

no = I − Πn
yes.

These projections describe a projective measurement that corresponds to asking the question “is
the particle at location n?”. Given a system in state |ψ〉, the answer is “yes” with probability
‖Πn

yes |ψ〉 ‖2, in which case the state of the system becomes Πn
yes |ψ〉 (renormalized) and the an-

swer is “no” with probability ‖Πn
no |ψ〉 ‖2, in which case the state of the system becomes Πn

no |ψ〉
(renormalized).

The first type of process we consider is the one-boundary quantum walk, which is as follows.
The system being considered is initialized to some state |0〉 (α |L〉 + β |R〉), which corresponds to
a particle at location 0 and having direction component in state (α |L〉 + β |R〉). Fix an integer
M > 0, which will be the location of our absorbing boundary. For given U, we alternately apply
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WU and the measurement described by {ΠM
yes, ΠM

no}, which gives result “yes” if the particle has
reached location M and “no” otherwise. The process is repeated until the result “yes” is obtained.
The probability that the result “yes” is obtained is the exit probability for this walk. For fixed U and
given M, α, and β, we will denote this exit probability by rM(α, β). We also write pM = rM(1, 0) and
qM = rM(0, 1) for short, i.e., pM is the exit probability for starting in state |0, L〉 and qM is the exit
probability for starting in state |0, R〉.

We also consider two-boundary quantum walks. In this case, the particle is initialized in
some state |0〉 (α |L〉 + β |R〉) and we alternately apply WU and the (commuting) measurements
described by

{Π−ML
yes , Π−ML

no } and {ΠMR
yes , ΠMR

no }
for 0 < ML, MR. The quantities of interest in this case are the probability of exiting from the
left (i.e., measuring the particle at location −ML) and the probability of exiting from the right
(measuring the particle at location MR). Again, in this case the boundaries are absorbing, since
the process is terminated when either measurement gives result “yes”.

2.3 Statement of results

In this paper, we give a complete description of the exit probabilities for one-boundary quantum
walks in one-dimension for arbitrary unitary U, any starting state of the form |0〉 (α |L〉 + β |R〉),
and any boundary location M > 0. This includes integrals for computing exact exit probabilities,
closed form solutions for the exit probabilities in the limit of large M (one of which proves a
recent conjecture of Yamasaki, Kobayashi and Imai [11]), and several other results concerning the
behavior of these probabilities. It is proved that it is enough to consider only real unitary U for
the purposes of analyzing such walks.

For two-boundary Hadamard quantum walks in one dimension, we present integrals for the
exact exit probabilities when the particle starts out an arbitrary distance from one wall and an
asymptotically large distance from the other. These integrals are evaluated to yield closed form
solutions for the exit probabilities when the distance from the first wall is small and when the par-
ticle starts out very far from both walls. We then calculate the time-dependence of the absorption
probability at long times for both one- and two-wall walks.

Finally, for D-dimensional walks, we generalize some of the results of [2] on one-dimensional
walks, including a derivation of the asymptotic form for the amplitudes associated with the walk
and a demonstration that the amplitude spreads nearly uniformly. For D-dimensional quantum
walks with a (D − 1)-dimensional barrier an integral for the absorption probability is derived.

3 Combinatorial analysis

3.1 Generating functions

As described in Section 2, we consider the case where our system is initialized in some state

|0〉 (α |L〉+ β |R〉)

and we alternately apply the unitary operator WU and perform the measurement described by
{ΠM

yes, ΠM
no} for some choice of M > 0. This process is repeated until the measurement gives result

“yes”, at which time the process is terminated.
We begin with two special cases: the first is the case that the starting state is |0, L〉 and the

absorbing boundary is at M = 1, and the second is the case that the starting state is |0, R〉 and
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the boundary is at M = 1. We will define generating functions for these cases that are used to
determine exit probabilities for all starting states and boundary positions. For given unitary U
define two generating functions f and g as follows:

fU(z) =
∞

∑
t=1

〈1, R|WU(Π1
noWU)t−1 |0, L〉 zt,

gU(z) =
∞

∑
t=1

〈1, R|WU(Π1
noWU)t−1 |0, R〉 zt.

The coefficient of zt in fU(z) is therefore the (non-normalized) amplitude with which the system is
in state |1, R〉 after t time steps, assuming the system starts in state |0, L〉, and gU(z) is similar except
we start in state |0, R〉. We will simply write f and g to denote fU and gU when U is understood.
Thus, for example, the probability that a particle starting in state |0, L〉 is eventually observed at
location 1 is

p1 = ∑
t≥0

∣

∣[zt] f (z)
∣

∣

2
,

where [zt] f (z) denotes the coefficient of zt in f (z), and similarly the probability that a particle
starting in state |0, R〉 is eventually observed at location 1 is

q1 = ∑
t≥0

∣

∣[zt]g(z)
∣

∣

2
.

The reason that the generating functions f and g are useful for analyzing exit probabilities for
all boundary positions is as follows. For given M ≥ 2 consider a generating function defined
similarly to f , except for the boundary at location M rather than location 1. Then this generating
function is simply f (z)(g(z))M−1, which follows from the fact that to get from location 0 to location
M, the particle needs to effectively move right M times, and for each move after the first, the
starting direction component is R. Similarly, the generating function corresponding to starting in
state |0, R〉 is simply (g(z))M.

Given arbitrary generating functions u and v, their Hadamard product is u ⊙ v, defined by

(u ⊙ v)(z) = ∑
t≥0

([zt]u(z))([zt]v(t)) zt .

Thus, p1 = ( f ⊙ f )(1) and q1 = (g ⊙ g)(1). In general we have

(u ⊙ v)(1) =
1

2π

∫ 2π

0
u(eiθ)v(e−iθ)dθ, (1)

provided ∑t≥0([z
t]u(z))([zt]v(t)) converges. A proof of this fact follows from results in Section 4.6

of Titchmarsh [17].

3.2 Hadamard Walk

The most common choice for U in recent papers on one-dimensional quantum walks has been (or
is equivalent to) the following:

U |L〉 =
1√
2
(|L〉+ |R〉), U |R〉 =

1√
2
(|L〉 − |R〉), (2)
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i.e., U is the Hadamard transform where we identify |L〉 = |0〉 and |R〉 = |1〉. The resulting
walk has been called the Hadamard walk. It turns out that the general behavior of this walk is not
specific to the Hadamard transform, as we will show shortly. (Nayak and Vishwanath [16] have
also claimed results concerning the generality of the Hadamard walk.) However, it is helpful to
first consider the Hadamard transform because it is simple and we can reduce the behavior of
general quantum walks to the Hadamard walk.

It can be shown that for U as in Eq. (2) we have

f (z) =
1 + z2 −

√
1 + z4

√
2z

, (3)

g(z) =
1 − z2 −

√
1 + z4

√
2z

= f (z) −
√

2z. (4)

We will not argue this here, since later we will derive generating functions for arbitrary U that
give these generating functions in the case of the Hadamard transform.

Define F(θ) = f (eiθ) and G(θ) = g(eiθ). Then by Eq. (1)

p1 =
1

2π

∫ 2π

0
|F(θ)|2dθ =

2

π

q1 =
1

2π

∫ 2π

0
|G(θ)|2dθ =

2

π
,

as proved in Ref. [2]. Thus, in this case a particle starting at location 1 has a 1 − 2/π ≈ 0.3634
probability of “escaping” the absorbing boundary at location 0, which contrasts with the classical
unbiased random walk, for which the probability of escape is 0.

Suppose now that the boundary is at location M for any M ≥ 1. Then from the discussion in
the previous subsection we conclude that

pM =
1

2π

∫ 2π

0
|F(θ)|2|G(θ)|2M−2dθ (5)

qM =
1

2π

∫ 2π

0
|G(θ)|2Mdθ. (6)

These expressions make it very easy to calculate the exit probabilities in the limit for large M. We
will prove shortly that |G(θ)| ≤ 1 for all θ ∈ [0, 2π], with strict inequality for θ ∈ (π/4, 3π/4) ∪
(5π/4, 7π/4). This gives

lim
M→∞

pM = lim
M→∞

1

2π

∫ 2π

0
|F(θ)|2|G(θ)|2M−2dθ

=
1

2π

∫ π
4

− π
4

|F(θ)|2dθ +
1

2π

∫ 5π
4

3π
4

|F(θ)|2dθ

=
2

π
− 1

2
≈ .1366

and

lim
M→∞

qM = lim
M→∞

1

2π

∫ 2π

0
|G(θ)|2Mdθ =

1

2π

∫ π
4

− π
4

dθ +
1

2π

∫ 5π
4

3π
4

dθ =
1

2
.

The estimate for |G| can be verified as follows. Substituting z = eiθ in (4), we find

G(θ) =
−2i sin θ ±

√
2 cos 2θ√

2
. (7)

6



So |G(θ)|2 = 2 sin2 θ + cos 2θ = 1 whenever cos 2θ ≥ 0. On the other hand, if cos 2θ < 0, then

|G(θ)|2 =
(2 sin θ ±

√
−2 cos 2θ)2

2
. (8)

The sign is negative when θ ∈ (π/4, 3π/4), making

|G(θ)|2 = 2 sin2 θ + cos 2θ − 2 sin θ
√
−2 cos 2θ < 1.

In the other interval, the sign is positive, and we argue similarly.
Now let us calculate the exit probabilities in the limit for large M for arbitrary directional

component in the starting state. Assume the particle starts in state

|0〉 (α |L〉+ β |R〉).

Recall that we denote the exit probability for starting in this state by rM(α, β). The generating
function for absorbed paths is now

α f (z)g(z)M−1 + βg(z)M = (α f (z) + βg(z))g(z)M−1.

The exit probability is therefore

rM(α, β) =
1

2π

∫ 2π

0
|αF(θ) + βG(θ)|2|G(θ)|2M−2dθ

∼ 1

2π

∫

Γ
|αF(θ) + βG(θ)|2dθ

where Γ = (−π
4 , π

4 ) ∪ ( 3π
4 , 5π

4 ). It will be helpful to note that

1

2π

∫

Γ
F(θ)G(−θ)dθ =

1

2π

∫

Γ
|F(θ)|2dθ − 1

2π

∫

Γ

√
2e−iθ F(θ)dθ =

1

π
− 1

2
,

which follows from the fact that g(z) = f (z) −
√

2z. Therefore

lim
M→∞

rM(α, β) = |α|2
(

2

π
− 1

2

)

+ |β|2
(

1

2

)

+ 2ℜ(αβ)

(

1

π
− 1

2

)

. (9)

The extreme values of this probability can be obtained as follows. First, note that it is enough
to consider real values of α and β. Setting α = cos θ, β = sin θ and looking for critical points, one
finds that the probability is maximized when α = cos(5π/8) and β = sin(5π/8), giving

lim
M→∞

rM(α, β) =
1√
2

+
1 −

√
2

π
≈ .5753

and is minimized when α = cos(π/8) and β = sin(π/8), giving

lim
M→∞

rM(α, β) = − 1√
2

+
1 +

√
2

π
≈ .0614.
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3.3 Asymptotics of Exit Probabilities

It is clear from the integral representation of rM(α, β) and the estimate |G| ≤ 1 that these probabil-
ities decrease with M, to the limits computed in the last section. In this subsection we investigate
how quickly the limit r∞ = limM →∞ rM(α, β) is approached. We shall prove that

rM(α, β) = r∞ + O(M−2) (10)

and show how to compute an asymptotic series for the remainder. The principal technique is
Watson’s lemma [18], which is suited for handling integrals of functions with branch points. The
basic idea is to make a change of variables to eliminate the branch point and then integrate by
parts.

Expanding the integral representation of the last section, we get

rM(α, β) =
|α|2
2π

∫ 2π

0
|F|2|G|2M−2 dθ

+
|β|2
2π

∫ 2π

0
|G|2M dθ (11)

+
2ℜ(αβ̄)

2π

∫ 2π

0
ℜ (F/G) |G|2M dθ.

(The last term has no contribution from ℑ(αβ̄) because of symmetry.)
The coefficient of |α|2 is

pM =
1

2π

∫ 2π

0
|F|2|G|2M−2 dθ =

(

2

π
− 1

2

)

+ 4IM,

where

IM =
1

2π

∫ π/2

π/4
|F/G|2|G|2Mdθ. (12)

Here we have used the symmetry and periodicity of the integrand.
The functions appearing in the right hand side of (12) are analytic, with branch points at π/4.

It will be useful to develop series expansions for them. When π/4 < θ < π/2 we have from (8)

|G|2 =
(2 sin θ −

√
−2 cos 2θ)2

2
.

Letting θ = π/4 + t, this implies that

|G|2 = 1 − 2
√

2s + 4s2 − 2
√

2s3 +
5
√

2

3
s5 + O(s6) (13)

with s = t1/2. We can derive a similar expression for |F/G|2 as follows. Starting from (3) and (4)
we get, after some algebra

f

g
= z2 −

√

1 + z4 = z
(

z ±
√

z2 + z−2
)

.

When z = eiθ and π/4 < θ < 3π/4, the sign is positive, so

|F/G|2 =
∣

∣

∣eiθ + i
√
−2 cos 2θ

∣

∣

∣

2
= 1 − 2 cos 2θ + 2 sin θ

√
−2 cos 2θ.
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This implies

|F/G|2 = 1 + 2
√

2s + 4s2 + 2
√

2s3 − 5
√

2

3
s5 + O(s6). (14)

We now return to the evaluation of IM. The substitution e−u = |G(θ)|2 produces

IM =
1

2π

∫ π/2

π/4
|F|2|G|2M−2 dθ =

1

2π

∫ log(3+2
√

2)

0
φ(u)e−uMdu. (15)

When M is large, the factor φ influences the value of IM only locally, that is, only through its Taylor
series expansion near u = 0. Our next task is to determine this expansion. Recall that

e−u = 1 − u +
∞

∑
k=2

(−1)k uk

k!
. (16)

Since this equals (13), the implicit function theorem implies that there is a function r, analytic
around 0, for which s = r(u). The coefficients of r can be computed term by term. Doing this, we
get

r(u) =

√
2

4
u +

√
2

96
u3 +

11
√

2

7680
u5 + O(u6). (17)

From r = t1/2 we get r′(u)du = (1/2)t−1/2dt, so

φ(u) = 2r(u)r′(u)|F/G|2s=r(u). (18)

Combining this with (14) and (17), we get

φ(u) =
1

4
u +

1

4
u2 +

1

6
u3 +

1

12
u4 +

79

1920
u5 + O(u6). (19)

Now, integrate (15) by parts ν + 1 times. We find that

IM =
ν

∑
k=0

φ(k)(0)

Mk+1
+ O(M−ν−2). (20)

Taking ν = 5 and computing the derivatives from (19) gives us the asymptotic series

pM =

(

2

π
− 1

2

)

+
1

2πM2
+

1

πM3
+

2

πM4
+

4

πM5
+

79

8πM6
+ O(M−7). (21)

Aficionados of the “law of small numbers” will appreciate that one must develop this series to
order 6 to obtain a coefficient that does not fit the initial pattern.

Applying similar reasoning, the coefficient of |β|2 is

qM =
1

2
+

1

2πM2
+

1

2πM4
+

19

8πM6
+ O(M−7), (22)

and the coefficient of 2ℜ(αβ̄) is

(pq)M =

(

1

π
− 1

2

)

− 1

2πM3
− 3

4πM4
− 2

πM5
− 15

4πM6
+ O(M−7). (23)

Using these in (11), we get (10).
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3.4 Other Transformations

In this section we argue that the exit probabilities of the Hadamard walk are not really specific to
the Hadamard transform. The argument can be generalized to other properties of the Hadamard
walk. More generally, we show that it suffices to analyze unitary transformations U with only real
entries.

Suppose instead of using the Hadamard transform we let U be the general transformation
defined by:

U |L〉 = a |L〉+ b |R〉 , U |R〉 = c |L〉+ d |R〉 . (24)

We will consider generating functions fU(z) and gU(z) defined in Section 3.2 for this general trans-
formation U. It is easy to see that these generating functions must satisfy

fU(z) = bz + az fU(z)gU(z)

gU(z) = dz + cz fU(z)gU(z).

Solving these equations for fU(z) and gU(z) and taking the solutions that make sense for small
powers of z gives

fU(z) =
1 − (ad − bc)z2 −

√

1 − 2(ad + bc)z2 + (ad − bc)2z4

2cz

gU(z) =
1 + (ad − bc)z2 −

√

1 − 2(ad + bc)z2 + (ad − bc)2z4

2az
.

The first few terms of these functions are as follows:

fU(z) = bz + abdz3 + abd(ad + bc)z5 + abd(a2d2 + 3abcd + b2c2)z7+

abd(a3d3 + 6ab2c2d + 6a2bcd2 + b3d3)z9 + · · ·

gU(z) = dz + bcdz3 + bcd(ad + bc)z5 + bcd(a2d2 + 3abcd + b2c2)z7+

bcd(a3d3 + 6ab2c2d + 6a2bcd2 + b3d3)z9 + · · ·
Letting X = ad and Y = bc, we see that

fU(z) =
1 − (X −Y)z2 −

√

1 − 2(X + Y)z2 + (X − Y)2z4

2cz

gU(z) =
1 + (X −Y)z2 −

√

1 − 2(X + Y)z2 + (X − Y)2z4

2az
.

Next, we can simplify matters by taking into account that U is unitary. An arbitrary 2 × 2
unitary matrix can be written

eiη

(

ei(φ+ψ)√ρ ei(−φ+ψ)
√

1 − ρ

ei(φ−ψ)
√

1 − ρ −ei(−φ−ψ)√ρ

)

(25)

where η, φ, ψ are real and 0 ≤ ρ ≤ 1. The global phase of η will not affect the behavior of the walk
in any way, so for simplicity we may set η = 0 without loss of generality. We will write Uρ,φ,ψ to
denote this transformation in order to stress the dependence on ρ, φ, and ψ. This leaves us with

X = −ρ

Y = 1 − ρ.

10



Since X −Y = −1 and −(X + Y) = 2ρ − 1, we may write

fUρ,φ,ψ(z) =
1 + z2 −

√

1 + 2(2ρ − 1) z2 + z4

2ei(−φ+ψ)
√

1 − ρz

def
= fρ,φ,ψ(z)

gUρ,φ,ψ(z) =
1 − z2 −

√

1 + 2(2ρ − 1) z2 + z4

2ei(φ+ψ)√ρz

def
= gρ,φ,ψ(z).

Thus,

|Fρ,φ,ψ(θ)|2 =
1

4(1 − ρ)

∣

∣

∣

∣

1 + e2iθ −
√

1 + 2(2ρ − 1)e2iθ + e4iθ

∣

∣

∣

∣

2

|Gρ,φ,ψ(θ)|2 =
1

4ρ

∣

∣

∣

∣

1 − e2iθ −
√

1 + 2(2ρ − 1)e2iθ + e4iθ

∣

∣

∣

∣

2

,

and as a result we see that, for instance, the quantities

pM =
1

2π

∫ 2π

0
|Fρ,φ,ψ(θ)|2|Gρ,φ,ψ(θ)|2M−2dθ

qM =
1

2π

∫ 2π

0
|Gρ,φ,ψ(θ)|2Mdθ

depend only on M and ρ. Therefore, the exit probabilities for the Hadamard walk would have
been the same had we taken U = 1√

2

(

1 1
−1 1

)

or U = 1√
2

(

1 i
i 1

)

rather than the Hadamard transform.
For arbitrary starting states, the exit probabilities may depend on φ and ψ in addition to ρ, but

this change can be compensated for by considering slightly different starting states. Consider the
starting state |0〉 (α |L〉 + β |R〉) and transformation Uρ,φ,ψ. Then the exit probability for this walk
is

rM(α, β) =
1

2π

∫ 2π

0
|αFρ,φ,ψ(θ) + βGρ,φ,ψ(θ)|2|Gρ,φ,ψ(θ)|2M−2dθ.

But since ei(−φ+ψ) fρ,φ,ψ = fρ,0,0 and ei(φ+ψ)gρ,φ,ψ = gρ,0,0, we see that the exit probability is precisely
the same as the exit probability for the walk given by unitary transformation Uρ,0,0 and starting

state αei(φ−ψ) |0, L〉 + βei(−φ−ψ) |0, R〉.
Consequently, it suffices to study the simpler type of transformation Uρ,0,0, i.e., transformations

of the form
|L〉 → √

ρ |L〉+
√

1 − ρ |R〉 and |R〉 →
√

1 − ρ |L〉 −√
ρ |R〉 (26)

for ρ ∈ [0, 1] to determine the properties of more general walks. Such transformations have been
considered by Yamasaki, Kobayashi and Imai [11]. In this case we get

fU(z) =
1 + z2 −

√

1 + 2(2ρ − 1)z2 + z4

2
√

1 − ρz

gU(z) =
1 − z2 −

√

1 + 2(2ρ − 1)z2 + z4

2
√

ρz
.

Then

pM =
1

2π

∫ 2π

0
|FU(θ)|2|GU(θ)|2M−2dθ

qM =
1

2π

∫ 2π

0
|GU(θ)|2Mdθ.
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Letting θρ = cos−1(1−2ρ)
2 , and Γρ = (−θρ, θρ) ∪ (π − θρ, π + θρ), we see (after some algebra) that

|GU(θ)| = 1 for θ ∈ Γρ and |GU(θ)| < 1 for θ 6∈ Γρ. This gives

qM ∼ 1

2π

∫

Γρ

dθ =
cos−1(1 − 2ρ)

π
=

sin−1(2ρ − 1)

π
+

1

2
. (27)

This agrees with Conjecture 1 of [11] and Eq. (45) below, obtained by the eigenvalue method (since
cos−1(1 − 2ρ) = 2 sin−1 √ρ). We also have

pM ∼ 2

π
√

1/ρ − 1
+

ρ

(1 − ρ)π
cos−1(1 − 2ρ) − ρ

(1 − ρ)
. (28)

This can be computed as 1/(2π)
∫

Γρ
|F/G|2dθ, but we leave this integration job to the interested

reader. This value also follows from Eq. (45) below.

4 Eigenfunction method

In this section we present an eigenfunction method for computing absorption probabilities of
quantum walks. We present the method for the quantum random walk introduced in Ref. [11];
the calculation for the general quantum walk corresponding to the transformation of Eq. (24) is
straightforward but involves slightly more complicated notation. Letting L(n, t) denote the ampli-
tude of state |n, L〉 at time t and R(n, t) denote the amplitude of state |n, R〉 at time t, the dynamical
equations are

(

L(n, t)
R(n, t)

)

=

(√
ρ L(n + 1, t − 1) +

√

1 − ρ R(n + 1, t − 1)
√

1 − ρ L(n − 1, t − 1) −√
ρ R(n − 1, t − 1)

)

, (29)

where we are ignoring boundaries for now. The Hadamard walk corresponds to the choice ρ =
1/2.

Though our main interest here is in studying systems with one or two absorbing boundaries,
it will be very useful to have at our disposal the eigenfunctions for systems with no boundaries
and for periodic systems. Therefore, we compute them first.

4.1 Systems with no boundaries

If one looks for solutions of the form
(

L(n, t)
R(n, t)

)

=

(

Ak

Bk

)

ei(kn−ωkt) ,

then to satisfy Eq. (29) one must have

e−iωk

(

Ak

Bk

)

= Uk

(

Ak

Bk

)

,

with

Uk =

( √
ρ eik

√

1 − ρ eik
√

1 − ρ e−ik −√
ρ e−ik

)

.

12



The characteristic polynomial of Uk is λ2 −√
ρ
(

eik − e−ik
)

λ − 1, so its eigenvalues are

λk± =
√

ρ

[

i sin k ±
√

cos2 k + (−1 + 1/ρ)

]

. (30)

Since Uk is unitary we may write λk± = e−iωk± with

ωk+ = − sin−1 (
√

ρ sin k) (31)

ωk− = π − ωk+ .

The corresponding eigenfunctions have the form (4.1) with

Ak± =
1√
2N

√

√

√

√
1 ± cos k

√

1/ρ − sin2 k
,

Bk± = ± e−ik

√
2N

√

√

√

√
1 ∓ cos k

√

1/ρ − sin2 k
. (32)

We have normalized these eigenfunctions so that |Ak,σ|2 + |Bk,σ|2 = 1/N, which makes the prob-
abilities over any N consecutive lattice sites sum to 1. We have also chosen the arbitrary phase to
ensure that the Ak± are real and positive. The group velocity is

v± ≡ dω±
dk

= ∓ cos k
√

1/ρ − sin2 k
; (33)

v− is positive for −π/2 < k < π/2, and v+ = −v− is positive for −π < k < −π/2 and for
π/2 < k < π.

4.2 Model with periodic boundary conditions

We now consider a system whose boundary conditions are periodic with period N. Any wave-
function of this system can be written as a linear superposition of the eigenstates computed above:

(

L(n, t)
R(n, t)

)

= ∑
k∈(−π,π)

σ=±

Ck,σ

[(

Ak,σ

Bk,σ

)

eikn−iωk,σt

]

. (34)

For an initial condition of the form
(

L(n, 0)
R(n, 0)

)

= δn0

(

α
β

)

,

the Ck± satisfy
(

Ak+ Ak−
Bk+ Bk−

)(

Ck+

Ck−

)

=
1

N

(

α
β

)

.

Solving for the Ck± yields

Ck± = Ak±α + Bk±β . (35)

In the sequel we will consider periodic systems with N large compared to the physical feature of
interest (i.e., M ≪ N), with the idea of letting N → ∞. As an alternative to this procedure, one
could also average over the continuous variable k from the start.
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Figure 1: Diagram of system with unitary time evolution with dynamics that for all n < M are
identical to those of a quantum walk with an absorbing wall at position n = M.

4.3 Model with one absorbing boundary

Now consider a system with an absorbing wall at location n = M, where for definiteness we will
take M > 0. For our purposes it is useful to think of the wall as a boundary through which right-
movers can be transmitted, so that the problem remains unitary and probability is conserved. We
extend the problem so that inside the domain the dynamics are identical to the original model,
and outside the domain right-movers move right and left-movers move left, as shown in figure 1.
Specifically, the model is as follows.

For n < M − 1:
(

L(n, t)
R(n, t)

)

=

( √
ρ L(n + 1, t − 1) +

√

1 − ρ R(n + 1, t − 1)
√

1 − ρ L(n − 1, t − 1) −√
ρ R(n − 1, t − 1) ,

)

for n ≥ M:
(

L(n, t)
R(n, t)

)

=

(

L(n + 1, t − 1)
R(n − 1, t − 1)

)

,

and finally, for the boundary condition:

(

L(M − 1, t)
R(M − 1, t)

)

=

(

L(M, t − 1)
√

1 − ρ L(M − 2, t − 1) −√
ρ R(M − 2, t − 1)

)

. (36)

There are no left-movers outside the domain, and once the right-movers go through the barrier
they are no longer converted to left-movers, so one must have L(M, t) = 0 at all times t. The
boundary condition Eq. (36) then implies that L(M − 1, t) = 0 also at all times t.

Thus, our system evolves according to Eq. (29) and must satisfy L(M − 1, t) = 0 at all times t.
The eigenstates of the periodic system discussed above clearly do not satisfy this condition. The
only way that L(M − 1, t) can vanish at all times t is for contributions from different k that have
the same value of ω to interfere destructively (otherwise the contributions can cancel at some but
not all times). From the dispersion relation Eq. (30), we see that ωk± = ω(π−k)±, and that there are
no other degeneracies. Thus one is led to look for eigenfunctions of the form

(Lk±(n, t)
Rk±(n, t)

)

= Nk±

[(

Ak±
Bk±

)

eikn + ζk±

(

A(π−k)±
B(π−k)±

)

ei(π−k)n

]

e−iωk±t , (37)

where the Nk± are normalization constants. The coefficients ζk± are fixed by requiring L(M −
1, t) = 0 for all t, or

Ak±eik(M−1) + ζk±A(π−k)±ei(π−k)(M−1) = 0 , (38)
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Figure 2: Probability |L(n, t)|2 + |R(n, t)|2 as a function of n and t of a Hadamard walk in one-
dimension with one absorbing wall started from the initial condition L(n, 0) = 0 and R(n, 0) ∝

exp(−n2/100) cos(πn/10), which is overwhelmingly composed of values of k very close to π/10.
Two wavepackets propagate with group velocities ±v ≈ 0.689 (Eq. 33; both +v and −v are seen
because the two bands propagate in opposite directions for a given k); one reflects from the ab-
sorbing boundary at position n = 100 with reflection probability Pr ≈ 0.184 (Eq. 40).

yielding (using the Ak± determined in Eq. (32))

ζk± = −
(
√

1 +
cos2 k

−1 + 1/ρ
± cos k
√

−1 + 1/ρ

)

e−i(π−2k)(M−1) .

This situation is analogous to what one finds when one considers the scattering of a particle by a
potential step, as discussed in many elementary quantum mechanics texts (see, e.g., [19]; also see
[8]). A rightmoving wave hits the step; the reflected wave is leftgoing. Figure 2, which shows the
time evolution of a Hadamard walk starting from an initial condition that is a superposition of a
small band of k’s, shows that an absorbing wall indeed acts in this manner.

We know that in the − band the wavefunctions proportional to eikn with wavevectors k in the
range (−π/2, π/2) are rightgoing, and we interpret with component at wavevector π − k as the
leftgoing piece generated by reflection off the boundary. The probability that a wave is reflected,
Pr(k), is just (for k ∈ (−π/2, π/2))

Pr(k) = |ζk−|2 =

(
√

1 +
cos2 k

−1 + 1/ρ
− cos k
√

−1 + 1/ρ

)2

. (39)

Similar calculations for the reflection coefficient of rightmoving wavepackets in the other band
and also for leftmoving waves that are reflected at a boundary at which R(−M + 1, t) = 0 at all
times t yields that the probability of reflection at wavevector k in all cases is

Pr(k) = |ζk−|2 =

(
√

1 +
cos2 k

−1 + 1/ρ
− | cos k|
√

−1 + 1/ρ

)2

. (40)

These reflection coefficients agree well with the results of our numerical simulations.
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We now need to write the initial condition as a superposition of eigenfunctions. Perhaps the
simplest way to do this is to use the method of images. Thus, we consider a system with no
boundary; one introduces an image outside the domain that is adjusted to enforce the appropriate
boundary condition, which here is L(M− 1, t) = 0 for all t. We consider initial conditions in which
the “physical” particle is at the origin,

(

L(n, 0)
R(n, 0)

)

=

(

α
β

)

δn0 .

The form of the unnormalized wavefunction derived above suggests that it will be useful to con-
sider together the pairs of wavevectors k, π − k. Thus we write

(

α
β

)

δn,0 = ∑
k∈(−π/2,π/2)

σ=±

{

Ck,σ

(

Ak,σ

Bk,σ

)

eikn + Cπ−k,σ

(

Aπ−k,σ

Bπ−k,σ

)

ei(π−k)n

}

,

where the Ck,σ are given in Eq. (35). We now attempt to place an image so that the condition
L(M − 1, t) = 0 holds at all t. We guess that the image particle should be at n = 2(M − 1) (again,
this is suggested by the form of Eq. (37)) and try writing





L(n, t)
R(n, t)



= ∑
k∈(−π/2,π/2)

σ=±

e−iωk,σt











Ck,σ





Ak,σ

Bk,σ



eikn+Cπ−k,σ





Aπ−k,σ

Bπ−k,σ



ei(π−k)n







+

{

Dk,σ

(

Ak,σ

Bk,σ

)

eik(n−2(M−1)) + Dπ−k,σ

(

Aπ−k,σ

Bπ−k,σ

)

ei(π−k)(n−2(M−1))

}]

, (41)

where once again we have used the fact that ωk,σ = ωπ−k,σ. Again, since L(M − 1, t) = 0 for all
times, we must have for each k ∈ (−π/2, π/2):

Ck,σ Ak,σeik(M−1) + Cπ−k,σAπ−k,σei(π−k)(M−1)

+ Dk,σ Ak,σe−ik(M−1) + Dπ−k,σAπ−k,σe−i(π−k)(M−1) = 0 .

It is straightforward to verify that this equation is satisfied if we choose

Dk,σ = −eiπ(M−1)Cπ−k,σ
Aπ−k,σ

Ak,σ
.

Hence, inside the domain (n < M) the time-dependent wavefunction is





L(n, t)
R(n, t)



= ∑
k∈(−π/2,π/2)

σ=±

e−iωk,σt











Ak,σ

Bk,σ



eiknFk,σ+





Aπ−k,σ

Bπ−k,σ



ei(π−k)nGk,σ







, (42)

with

Fk,σ =

[

Ck,σ − ei(π−2k)(M−1)Cπ−k,σ
Aπ−k,σ

Ak,σ

]

Gk,σ =

[

Cπ−k,σ − e−i(π−2k)(M−1)Ck,σ
Ak,σ

Aπ−k,σ

]

.

(43)

As expected, this wavefunction satisfies Eq. (38).
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The wavefunction of Eq. (42) is a superposition of wavefunctions proportional to eikn, which
describe free particles propagating with constant velocity dω/dk (often called plane waves, since
in higher dimensions the surfaces of constant phase are planes). In the limit of long times, the
only components that are in the physical domain are leftgoing, which for k ∈ (−π/2, π/2) are
((k, +) and (π − k,−). Therefore, ΛM, the probability that the particle escapes to n → −∞ when
the absorbing wall is at M, is

ΛM = ∑
k∈(−π/2,π/2)

|Fk,+(M)|2 + |Gk,−(M)|2 .

Using Eqs. (43), (35), and (32), we see that Gk,−(M) = Fk,+(M), so

ΛM = 2 ∑
k∈(−π/2,π/2)

|Fk,+(M)|2 ,

with

Fk,+(M) =
α

Ak+

(

A2
k+ − ei(π−2k)(M−1)A2

k−
)

+ βAk−
(

eik + ei(π−2k)(M−1)e−ik
)

.

Converting the sum to an integral, and noting that the integrals of terms that are odd in k vanish,
we find that

ΛM =
1

π

∫ π/2

−π/2
dk LM(k) ,

with

LM(k) = ℓ
2



1 − cos k
√

1/ρ − sin2 k





(

1/ρ + cos(2k)

1/ρ − 1
+ cos(πM) cos(2k(M − 1))

)

+ r2



1 − cos k
√

1/ρ − sin2 k



 (1 − cos(πM) cos(2kM))

+ 2ℓr cos Φ

(

cos k
√

1/ρ − 1

)



1 − cos k
√

1/ρ − sin2 k



 (cos k − cos(πM) cos(k(2M − 1))) , (44)

where we have written α = ℓeiφl , β = reiφr , and Φ = φl − φr. We obtain

ΛM(ρ) = ℓ
2

(

− 2

π
√

1/ρ − 1
+

1

1 − ρ

(

1 − 2ρ

π
sin−1 √ρ

)

− 1

π
(−1)M

∫ π/2

−π/2
dk

cos k
√

1/ρ − sin2 k
cos(2k(M − 1))





+ r2



1 − 2

π
sin−1 √ρ +

1

π
(−1)M

∫ π/2

−π/2
dk

cos k
√

1/ρ − sin2 k
cos(2kM)





+ ℓr cos Φ

(

1
√

1/ρ − 1
− 2

π

(

1 +
1 − 2ρ

√

ρ(1 − ρ)
sin−1 √ρ

)

+
2

π

(−1)M

√

1/ρ − 1

∫ π/2

−π/2
dk

cos2 k
√

1/ρ − sin2 k
cos(k(2M − 1))



 . (45)
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M Cℓ Cr Cℓr

1 1 − 2
π ≈ 0.36338 1 − 2

π ≈ 0.36338 2 − 4
π ≈ 0.72676

2 2 − 4
π ≈ 0.72676 3 − 8

π ≈ 0.45352 3 − 8
π ≈ 0.45352

3 4 − 10
π ≈ 0.816901 13 − 118

3π ≈ 0.479811 11 − 100
3π ≈ 0.38967

4 14 − 124
3π ≈ 0.843191 65 − 608

3π ≈ 0.489196 53 − 496
3π ≈ 0.372765

5 66 − 614
3π ≈ 0.852577 341 − 16046

15π ≈ 0.493304 277 − 13036
15π ≈ 0.367488

∞ 3
2 − 2

π ≈ 0.86338 1
2 1 − 2

π ≈ 0.36338

Table 1: Coefficients characterizing the probability of escape to −∞ of the Hadamard walk started
in the initial state α |0, L〉 + β |0, R〉 by an absorbing wall at M. Here, α = ℓeiφl , β = reiφr , and
Φ = φl − φr. The quantity ΛM, the probability of escape to −∞ when the wall is located at M, is
given by ΛM = ℓ2Cℓ(M) + r2Cr(M) + ℓr cos ΦCℓr(M). The probability of absorption by the wall is
1 − ΛM.

If instead of Eq. (26) we use the more general transformation of Eq. (25), one finds that the only
change in Eq. (45) is that cos Φ → cos(Φ + 2φ). Thus, as noted in Sec. 3.4, the absorption proba-
bilities do not depend on η or ψ, and the φ dependence can be removed by suitable adjustment of
the initial condition.

Eq. (45) only applies when M > 1, because when M = 1 the initial condition is inconsistent
with the boundary condition unless α = 0. This complication for M = 1 is easily handled by
evolving the walk for one time step by hand; for the initial condition α |L, 0〉 + β |R, 0〉 the prob-
ability of escape to −∞ when M = 1 is related to Λ2L, the probability that a walk starting in the
state |L, 0〉 escapes to n → −∞ when the wall is at M = 2, by

Λ1 = |α√ρ + β
√

1 − ρ|2Λ2L .

For the special case of the Hadamard walk (ρ = 1/2, φ = 0), we find Λ1 = (1 + 2ℓr cos Φ)(1 −
2/π). Values for other finite values of M are easily obtained by evaluation of the integrals in
Eq. (45); a few values for the Hadamard walk are listed in Table 1.

In the limit M → ∞ all the M-dependent terms vanish because of the oscillating integrands.
The coefficient of the r2 term in the limit M → ∞ has been correctly conjectured by Yamasaki
et al. [11] on the basis of numerical results. In the limit M → ∞, the probability that a particle
undergoing a Hadamard walk escapes to n → −∞ is

Λ∞ = ℓ
2

(

3

2
− 2

π

)

+
r2

2
+ ℓr cos Φ

(

1 − 2

π

)

. (46)

As expected, this agrees with Eq. (9). Integration by parts of the integrals in Eq. (45) may be used
to find the behavior at large but finite M (c.f., Eqs. (21–23)).

4.4 Model with two absorbing boundaries

Now we discuss the situation in which there are two absorbing walls, so the domain of the quan-
tum walk is finite. We restrict consideration to the Hadamard walk (ρ = 1/2, η = ψ = φ = 0), but

18



no essential complications are introduced when η, φ, ψ, or ρ take on different values. We place the
walls at +MR and −ML and again start the walker out at position n = 0.

By exploiting the results obtained above for the single wall case, it is rather simple to compute
the absorption probabilities when ML is very large. This can be seen by noting that because when
the walls are very far apart, the evolution can be viewed as a succession of reflections off the two
walls followed by a single transmission. From Eq. (40), we know that the reflection probability is
Pr = (

√
1 + cos2 k − | cos k|)2. Let us denote by TLMR

(k) the probability of transmission through
(or, in other words, absorption by) the left boundary of the component at wavevector k when the
right wall is at MR. Because the wavepacket can be absorbed at −ML the first time it hits that
boundary, or it can be reflected at both the left and right boundaries and then absorbed at the left
boundary, etc., we have

TLMR
(k) = LMR

(k) [(1 − Pr) + PrPr(1 − Pr) + PrPrPrPr(1 − Pr) + · · · ]

= LMR
(k)

1

1 + Pr

=
1

2
LMR

(k)

(

1 +
cos k√

1 + cos2 k

)

,

where LMR
(k) is defined in Eq. (44).

When MR > 1, the transmission through the left wall when the right wall is located at MR,
TLMR

, is thus

TLMR
=

1

π

∫ π/2

−π/2
dk TLMR

(k) ,

with

TLMR
(k) =

1

2
ℓ

2 1

1 + cos2 k
(2 + cos(2k) + cos(πM) cos(2k(M − 1)))

+
r2

2

1

1 + cos2 k
(1 − cos(πM) cos(2kM))

+ ℓr cos Φ cos k
1

1 + cos2 k
(cos k − cos(πM) cos(k(2M − 1))) .

Once again the MR = 1 case is done by evolving the system by hand for one time step. The results
for some finite values of MR are listed in Table 2. The result for MR = 1 was obtained previously
in Ref. [2].

As MR → ∞, the absorption by the left wall, TL∞ is

TL∞ = ℓ
2

(

1 − 1

2
√

2

)

+ r2

(

1

2
√

2

)

+ ℓr cos Φ

(

1 − 1√
2

)

The minimum value of TL∞ is when Φ = π, ℓ = sin(π/8), where TL∞ = 1− 1/
√

2 ≈ 0.292893, and
the maximum value of TL∞ occurs when Φ = 0, ℓ = sin(3π/8), where TL∞ = 1/

√
2 ≈ 0.707107.

When the two walls are close together, the calculations are straightforward in principle but
tedious in practice. The overall strategy of the calculation in this case is exactly the same as in all
the calculations above—instead of considering a problem with absorbing barriers, one considers
a unitary problem whose time evolution is identical within the physical domain. Here we embed
the walk in a large periodic domain; the model is as follows.

For −ML + 1 < n < MR − 1:
(

L(n, t)
R(n, t)

)

=
1√
2

(

L(n + 1, t − 1) + R(n + 1, t − 1)
L(n − 1, t − 1) − R(n − 1, t − 1)

)
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M Dℓ Dr Dℓr

1 1 − 1√
2
≈ 0.292893 1 − 1√

2
≈ 0.292893 2 −

√
2 ≈ 0.585786

2 2 −
√

2 ≈ 0.585786 6 − 4
√

2 ≈ 0.343146 6 − 4
√

2 ≈ 0.343146

3 7 − 9√
2
≈ 0.636039 35 − 49√

2
≈ 0.351768 30 − 21

√
2 ≈ 0.301515

4 36 − 25
√

2 ≈ 0.64461 204 − 144
√

2 ≈ 0.353247 170 − 120
√

2 ≈ 0.294373

5 205 − 289√
2
≈ 0.64614 1189 − 1681√

2
≈ 0.353501 986 − 697

√
2 ≈ 0.293147

∞ 1 − 1
2
√

2
≈ 0.646447 1

2
√

2
≈ 0.353553 1 − 1√

2
≈ 0.292893

Table 2: Coefficients characterizing the probability of escape through the left barrier to −∞ of the
quantum walk started in the initial state α |0, L〉+ β |0, R〉 with absorbing walls at M and at −ML,
when ML → ∞. Here, α = ℓeiφl , β = reiφr , and Φ = φl − φr. The quantity TL(M), the probability
of escape to −∞, is given by TL(M) = ℓ2Dℓ(M) + r2Dr(M) + ℓr cos ΦDlr(M). The probability of
absorption by the right wall at M is 1 − TL(M).

for n ≥ MR and n ≤ −ML:
(

L(n, t)
R(n, t)

)

=

(

L(n + 1, t − 1)
R(n − 1, t − 1)

)

and for the boundary points:

(

L(MR − 1, t)
R(MR − 1, t)

)

=

(

L(MR, t − 1)
1√
2
(L(MR − 2, t − 1) − R(MR − 2, t − 1))

)

(

L(−ML + 1, t)
R(−ML + 1, t)

)

=

(

1√
2
(L(−ML + 2, t − 1) + R(−ML + 2, t − 1))

R(−ML, t − 1)

)

We wish to find the energy eigenstates that satisfy

(

L(n, t)
R(n, t)

)

=

(

Lω(n)
Rω(n)

)

e−iωt

and are consistent with the boundary conditions L(MR + N) = L(−ML), R(MR + N) = R(−ML).
The eigenvalues and eigenfunctions of the model are specified by these conditions and can be

found similarly to those of systems with a finite square well potential [7]. In the “outer” region,
the eigenfunctions take the form

(

uωe−iωn

vωeiωn

)

e−iωt ,

where the periodic boundary condition is enforced by requiring eiω(ML+N) = e−iωMR ; the u and
v will be fixed by matching to the inner region. Since we wish to take N → ∞, there will be a
continuum of values of ω. Finding the wavefunction for all ML and MR is rather involved; for
every ω one must match the inner and outer wavefunctions, keeping in mind that in the inner
region there are ranges of ω for which there are no solutions proportional to eikn with k real and
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instead the wavefunctions have the form eκn with κ real. When the inner region is small, the
eigenfunctions can be found by brute force matching to the outer region. For ML = 1, MR = 1, we
have Lω(0) = uω and Rω(0) = vω. The wavefunction must satisfy the initial condition, so uω = α
and vω = β. Thus, for this case, as expected, the probability of absorption at the right and barriers
are |β|2 and |α|2, respectively. When ML = 1, MR = 2, the coefficients Lω(n) in the “inner” region
satisfy the following:

Lω(0) =
1√
2

eiω(Lω(1) + Rω(1)),

Lω(1) = uω,

Rω(1) =
1√
2

eiω(Lω(0) − Rω(0)),

Rω(0) = vω .

These equations can be solved to yield Lω(0) and Rω(1) in terms of uω and vω , which are in
turn fixed by enforcing the initial condition. However, the algebra is complicated and will not be
given here.

4.5 Arithmetic properties of exit probabilities

In this subsection we discuss what can be said about the exact exit probabilities for the Hadamard
walk.

Examination of Table 1 above suggests that the coefficients Cℓ(M), Cr(M), and Cℓr(M) are all
rational numbers plus rational multiples of 1/π. This can be proved as follows. Taking ρ = 1/2
in Eq. (45) we get for M > 1

Cℓ(M) =

(

3

2
− 2

π

)

− (−1)M

π

∫ π/2

−π/2

cos k cos (2(M − 1)k)√
1 + cos2 k

dk, (47)

Cr(M) =
1

2
+

(−1)M

π

∫ π/2

−π/2

cos k cos (2Mk)√
1 + cos2 k

dk,

and

Cℓr(M) = 1 − 2

π
+

2

π
(−1)M

∫ π/2

−π/2

cos2 k cos ((2M − 1)k)√
1 + cos2 k

dk.

In the notation of section 3, these are 1 − pM, 1 − qM, and −2(pq)M, respectively.
The integrals can be evaluated by observing that cos(mk) = Tm(cos k), where Tm is the degree

m Chebyshev polynomial of the first kind. The polynomial Tm has integral coefficients, and is even
or odd depending on whether m is even or odd. Making the substitution u = cos k, we see (since
we started with even integrands) that each of the integrals is a linear combination, with rational
coefficients, of expressions of the form

∫ 1

0

uj

√
1 − u4

du =

√
π

4
· Γ((j + 1)/4)

Γ((j + 3)/4)

with j odd. For such j, one of {(j + 1)/4, (j + 3)/4} is an integer and the other is a half integer.
Thus one of the Γ values is an integer and the other is a rational multiple of

√
π, giving the desired

form.
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A similar argument can be used to prove that the coefficients Dℓ, Dr, and Dℓr of Table 2 are
rational numbers plus rational multiples of

√
2. For this one needs the integral

∫ 1

0

u2j

(1 + u2)
√

1 − u2
du.

If we substitute u2 = t and use Theorem 2.2.2 of [20], we see it equals

√
π

2
· Γ(j + 1/2)

Γ(j + 1)
2F1

[

1, j + 1/2

j + 1
;−1

]

,

where 2F1 is the Gaussian hypergeometric function. It then follows from (15.3.5) and (15.4.11) of
[21] that the coefficients have the desired form.

These observations allow us to generalize a result of [2]. Suppose we start both walks at the
same distance from the right barrier, in the state α = 1, β = 0. Then the escape probability for the
1-barrier walk is never equal to the limit (as the left barrier recedes to −∞) of the corresponding
probability for the 2-barrier walk. This is so because π is not an algebraic number, and the coeffi-
cient of 1/π in Cℓ(M) is nonzero. (This last point can be verified as follows. From the explicit form
of Tm given in (22.3.6) of [21] we see that the nonzero coefficients of Tm alternate in sign, and when
m is even, Tm has constant term (−1)m/2. From this it follows that every term that the integral in
(47) contributes to the coefficient 1/π is negative, so that 2/π in (47) cannot be cancelled out.) The
physical interpretation of this result is that no matter how far away the second wall is, it reflects
probability back to the first wall.

The precise arithmetic properties of these numbers are interesting to contemplate. We can
show, for example, that when Cℓ(M) = cM,1 + cM,2/π, the denominator of cM,2 divides the product
of the odd numbers in {1, . . . , M − 1}. The first coefficient cM,1 is always an integer, as suggested
by Table 1.

4.6 Time dependence of absorption

The eigenfunction method can be used to calculate the time evolution of the absorption by the
boundaries. We consider here the situation when the walker starts off far from any boundary
(M large). We also specialize to ρ = 1/2; once again, generalization to other transformations is
straightforward.

When there are two walls, the approach to the asymptotic behavior is quite slow. This is be-
cause the reflection coefficient tends to unity as k → π/2, and the group velocity vg also vanishes
as k → π/2. Therefore, it takes a very long time for all the probability to be absorbed at the
walls—the fast-moving wavepackets are absorbed quickly, but as the evolution proceeds one is
left with components that move slower and slower and are absorbed less and less. The fraction of
the probability at wavevector k that is absorbed per unit time is

[fraction of probability absorbed per collision]

[time between collisions]
=

1 − Pr(k)

2M/vg(k)
=

1 −
(√

1 + cos2 k − cos k
)2

2M
√

1 + cos2 k/ cos k
≡ γk ,

where we have used the forms for the reflection coefficient Pr(k) and the group velocity vg(k) from
Eqs. (40) and (33), respectively. Thus, the change in probability Pk at wavevector k in a time ∆t is
approximately

(Pk(t + ∆t) −Pk(t))/∆t ≈ −γkPk(t) , (48)
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Figure 3: The time dependence of P(t), the probability that the particle has not been absorbed, is
different in systems with one and two absorbing boundaries. With one boundary, P(t) ∝ P(∞) +
constant/t2 (Eq. (51)), while with two boundaries, P(t) ∝ 1/

√
t (Eq. (50)). The faster approach to

the asymptotic value for systems with one boundary is because there are no repeated reflections,
while the constant probability at short times for both systems is because no probability has yet
reached the boundary at position M. Simulations and the analytic forms are all obtained using the
initial conditions ℓ = 0 and r = 1. The probability at t = ∞ for one boundary is given by Eq. (45),
and for two boundaries it is zero.

which in limit of slow variation, which is appropriate at long times, yields the differential equation

dPk

dt
∼ −γkPk(t) , (49)

so that Pk(t) = Pk(0)e−γkt. The total probability that the particle is inside the region at time t,
P(t), is the integral over wavevectors k of the probabilities Pk(t). At long times the probability
is dominated by k’s near ±π/2 (since the decay rate tends to zero there); expanding for k’s near
±π/2 yields

P(t) =
2

π

∫ π/2

0
dk (Pπ/2(0) + P−π/2(0))e−(π/2−k)2t/M ,

where the choice of initial condition determines P±π/2(0). The leading asymptotic behavior as
t → ∞, obtained by evaluating this integral, is

P(t) ∝

√

M

t
. (50)

When there is one wall that is far from the origin, the approach of the absorption probability to
the asymptotic value is faster because there is no possibility of repeated reflections. The behavior
can be characterized using Eq. (41) by calculating the total left-going probability from the physical
particle,

∫ π/2

−π/2
dk (|Ck,+|2 + |Cπ−k,−|2),
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the fraction of right-going probability from the physical particle that has yet to reach the wall
position n = M,

∫ π/2

cos−1( M/t√
1−(M/t)2

)
dk (|Ck,+|2 + |Cπ−k,−|2),

and the fraction of left-going probability from the image particle that has already passed the wall
position n = M,

∫ cos−1( M/t√
1−(M/t)2

)

− cos−1( M/t√
1−(M/t)2

)
dk (|Dk,+|2 + |Dπ−k,−|2),

as a function of time. The C’s and D’s represent probability amplitudes of plane waves emanating
from the physical and image particle, respectively, as indicated in Eq. (41), and the limits of inte-
gration take into account that at time T, only the k’s for which vgT < M have yet to reach the wall.
This gives the asymptotic time dependence for the probability as

P(t) = P(∞) +
M2

πt2
+ O(

M3

t3
), (51)

where P(∞) = ΛM(ρ = 1/2) is given in Eq. (45). Figure 3 demonstrates that the asymptotic forms
(50) and (51) provide an excellent description of the time dependence for times greater than a few
times the system size.

5 Quantum walks in general dimensionality

5.1 Introduction

A quantum walk on a D-dimensional lattice ~n ∈ ZD may be defined in several ways. We shall
adopt the following definition. One-dimensional quantum walks are discrete-time quantum pro-
cesses on the space

H(Z
D × {L1, R1, L2, R2, ..., LD, RD}).

The standard basis for this space therefore consists of elements of the form |n1, d1〉⊗ |n2, d2〉⊗ · · ·⊗
|nD, dD〉, where~n = (n1, n2, ..., nD) ∈ Zd is the location and di ∈ {Li, Ri} is the direction component
corresponding to the ith spatial dimension. Given an arbitrary unitary coin-toss operator C(i) on
the two-dimensional space H({L(i), R(i)}), define a unitary operator WU by WU = Πd

i=1T(i)(I ⊗
C(i)), where the translation T(i) in the ith dimension is defined by

T(i) |ni, Li〉 = |ni − 1, Li〉 , T(i) |ni, Ri〉 = |ni + 1, Ri〉 ,

A D-dimensional quantum walk is a process involving the iteration of WU. The quantum state at
time t is given by

∑
~n,~d

Ψ(~n, d1, ..., dD, t) |n1, d1〉 ⊗ |n2, d2〉 ⊗ · · · ⊗ |nD, dD〉

In physics terms, one would say that there is a 2-dimensional “internal degree of freedom” for
each spatial dimension on each site of the hypercubic lattice, and Ψ(~n, d1, ..., dD, t) is the time-
dependent wavefunction. In our definition, there is a separate coin toss in each dimension, since
the 2 × 2 matrices C(i) act only on the vector {Li, Ri}, and this vector is normalized for each value
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of the index i. Each C(i) is unitary and therefore preserves the normalzation. In our definition, it
is not necesssary that C(i) = C(j) for i 6= j, so the dynamics of the walk may be different in the
different spatial directions. The normalization of the wavefunction is

∑
~n,~d

|Ψ(~n, d1, ..., dD, t)|2 = D.

We shall abbreviate Ψ(~n, d1, ..., dD, t) by Ψ(~n, ~d, t).
A second more general definition would allow mixing of {Li, Ri} and {Lj, Rj} with i 6= j at the

coin toss step. Yet a third definition is that adopted by Mackay et al. [5]. These authors introduce
d qubits at each site, resulting in a 2d × 2d coin-toss matrix. The second and third models can also
be treated by the eigenfunction method, but the results are more cumbersome.

It is important to realize that our definition of the D-dimensional walk is not trivial. Phys-
ically, it is a fully D-dimensional analog of propagation of electrons on a lattice of atoms, just
as the 1-dimensional walk represents propagation of electrons on a line of atoms. Mathemati-
cally, the crucial point is that the paths which interfere to give the probability amplitudes are also
D-dimensional. The wavefunction spreads in all dimensions at each iteration of WU.

In this section, we give the formal eigenfunction expansion solution for the asymptotic behav-
ior of our D-dimensional quantum walk (first model) and the survival probability in this model
when a D − 1-dimensional absorbing wall is present.

5.2 No boundaries

The problem of finding Ψ(~n, ~d, t) = Wt
UΨ(~n, ~d, 0) with given Ψ(~n, ~d, 0) in the absence of absorbing

walls may be solved by an eigenfunction expansion. We make the Ansatz

Ψ(~n, ~d, t) = ψ~k
(~d)ei(~k·~n−ω~k

t),

where ψ~k
(~d) are the eigenfunctions of Css′

~k
:

2D

∑
s′=1

Uss′
~k

ψ~k
(s′) = e−iω~k ψ~k

(s), (52)

and s and s′ ∈ {1, 2, ..., 2D} label the components of ~d. The matrix Uss′
~k

is given by

Uss′
~k

=



















C
(1)
11 eik1 C

(1)
12 eik1 0 0 · · ·

C
(1)
21 e−ik1 C

(1)
22 e−ik1 0 0 · · ·

0 0 C
(2)
11 eik2 C

(2)
12 eik2 · · ·

0 0 C
(2)
21 e−ik2 C

(2)
22 e−ik2 · · ·

...
...

...
...

. . .



















.

Each submatrix is unitary. The wavevector variable~k = (k1, k2, ...kD) lies in the hypercubic region
|ki| ≤ π, i = 1...D. (It is convenient to envision the hypercubic lattice to be extended periodically
in all dimensions, and then taking the period to infinity.) There are in fact 2D solutions to the

eigenvalue equations 52 at a fixed value of~k. Let us index the eigenvalues ωα
~k

and the eigenfunc-

tions ψα
~k

by α = 1...2D. This “band” index α replaces the (+,−) labels of the previous section.
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The eigenvalues of the operator U have degeneracies that are important for the solution of
problems involving boundaries.

Let us first consider the 2 × 2 submatrix u1:

uss′
1 (k1) =

(

C
(1)
11 eik1 C

(1)
12 eik1

C
(1)
21 e−ik1 C

(1)
22 e−ik1

)

.

This is unitary and satisfies det u1 = ±1. A determinant of −1 for a submatrix characterizes
the Hadamard transformation, but a general 2 × 2 coin-toss operator could also have a positive
determinant. One can show that u1 satisfies the identity Ru1(k1)R−1 = det(u1)u1(−k1), where R
is the matrix

R =

(

0 −1
1 0

)

.

Thus u1(k1) is unitarily equivalent to u1(−k1) up to a sign. If we denote the reflection

(k1, k2, ...kD) → (−k1, k2, ...kd)

by~k →~kR we have ωα
k = ωα

kR
if det u1(k) = 1 and ωα

k = ωα
(π−k1,k2,...kD) if det u1(k) = −1

For a general coin toss matrix Css′ no such simple description of the degeneracies exists.
A quantum walk that starts at the origin~n = (0, 0, ...0) with arbitrary internal state satisfies

Ψ(~n, ~d, t = 0) = δ
~n,~0Ψ0(s) =

∫ 2D

∑
α=1

aα(~k) ψα
~k
(s) eik·~nDk, (53)

so that the coefficients aα are determined by the initial conditions. We shall employ the shorthand
notation

∫

f Dk ≡
(

1

2π

)D ∫ π

−π

∫ π

−π
· · ·

∫ π

−π
f dk1dk2 · · · dkD ,

and note that
∫

ei~k·~nDk = δ
~n,~0.

Thus, given the initial condition, we find the aα(~k) by inverting a set of linear equations at each

value of~k:

Ψ0(s) =
2D

∑
α=1

aα(~k) ψα
~k
(s) .

The full solution at all times is then

Ψ(~n, ~d, t) =
2D

∑
α=1

∫

aα(~k) ψα
~k
(s) e

i(~k·~n−ωα
~k

t)Dk.

To understand the asymptotic properties of this wavefunction at long times, consider a point that
moves at constant velocity ~n = ~ct away from the origin. After this substitution, the behavior of
the integral as t → ∞ may be obtained by the stationary phase method. The neighborhood(s) of

the point or points in k-space~kα
r (n) where ∇~k

ωα
~k
−~c = 0 dominate the integral. The subscript r
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labels the roots of this equation and may range over several values. The result is

Ψ(~n, s, t) =
2D

∑
α=1

∫

aα(~k) ψα
~k
(s) ei(~k·~c−ωα

k )t Dk

→
(

iπ

2

)D/2 2D

∑
α=1

∑
r

aα(~k
α
r ) ψα

~kr
(s) exp

[

(i~kα
r ·~c − iωα

~ki
)t
]

× |Jα
r |−1/2 t−D/2 + O(t−D/2−1),

where Jα
r is the Jacobian of the function ωα

~k
at the point~kα

r . If there are no solutions to the zero-

gradient condition, then the asymptotic behavior of
∣

∣

∣Ψ(~n, ~d, t)
∣

∣

∣ is generically determined by con-

tributions from the boundary of the region of integration and one finds
∣

∣

∣Ψ(~n, ~d, t)
∣

∣

∣ = O(t−D).

From this expression, we deduce that the probability
∣

∣

∣
Ψ(~n, ~d, t)

∣

∣

∣

2
spreads linearly with time

from the origin. The square of the wavefunction at a fixed point~n falls off asymptotically in time
as t−D. However, the overall probability is normalized:

1 = ∑
~ns

|Ψ(~n, s, t)|2 → t−D × ∑
|~n|<t

cst. ∼ t−DΩ,

where Ω is the volume occupied by the wavepacket. Hence Ω ∼ tD and the radius Ω1/D ∼ t. This

arises from the fact that the initial wavepacket is a superposition of waves at various values of~k
with various group velocities ~vα

k = ∇~k
ωα

~k
. Each such component moves according to the ballistic

equation ~n = ~vα
k t. Because of the limited range of

∣

∣

∣

~k
∣

∣

∣
, there is a maximum group velocity in each

spatial direction. This maximum velocity defines the wavefront in that direction. Even though
the boundary of the wavefunction may have a very irregular shape, that shape is maintained and
the object expands linearly in all directions.

5.3 (D-1)-dimensional absorbing wall

We now generalize the absorption problem to a (D − 1)-dimensional wall located at

~n = (M, 0, 0, ..., 0),

with M > 0. We shall treat only the case where det u1 = +1, as the other case has been treated in
detail in one dimension.

In fact, many of the results from Sec.4 generalize immediately. We again extend the problem
to the full space, stipulating that there is no motion to the left in the region n1 ≥ M. Then it is

sufficient to solve for the wavefunctions Ψ(~n, ~d, t) = Ψ(n1, n2, ...nD, ~d, t) in the region n1 < M that
satisfy Ψ(M − 1, n2, ...nD, 1, t) = 0, which means we have solutions of the form

Ψ(~n, ~d, t) =
2D

∑
α=1

∫

k1≥0

[

Aα(~k, M)ψα
~k
(s)ei~k·~n + Aα(~kR, M)ψα

~kR
(s)ei~kR ·~n

]

e
−iωα

~k
tDk.

Enforcing the boundary condition leads to the relation

2D

∑
α=1

Aα(~kR, M)ψα
~kR

(1) = −
2D

∑
α=1

Aα(~k, M) e2ik1(M−1)ψα
~k
(1)
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between an expansion coefficient and its reflected counterpart. As seen already in Sec.4, this re-
lation is consistent with the initial conditions, if it is kept in mind that the wavefunction is only
needed in the half-space n1 < M. The initial condition is

Ψ(~n, ~d, t = 0) = δ
~n,~0Ψ0(~d) =

2D

∑
α=1

∫

Aα(~k, M) ψα
~k
(s) ei~k·~nDk.

Using the method of images or otherwise, we invert this expression to determine the Aα(~k, M)
and the final solution for n1 < M is

Ψ(~n, s, t) =
2D

∑
α=1

∫

Aα(~k, M)ψα
~k
(s)ei~k·~ne

−iωα
~k

tDk.

To obtain the survival probability ΛM, we note that at long times only leftmoving waves (vα
1(

~k) =
∂ωα

~k
/∂k1 < 0) will be present in the physical domain:

ΛM =
1

D

2D

∑
α=1

2D

∑
s=1

∫

vα
1 (~k)<0

∣

∣

∣
Aα(~k, M)ψα

~k
(s)
∣

∣

∣

2
Dk.

An application of Parseval’s theorem shows that 0 < ΛM < 1, except for special choices of the
initial condition. This is in sharp distinction to the classical random walk, for which the survival
probability vanishes for all D and M.
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