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aAbstra
tWe introdu
e 2-way �nite automata with quantum and 
lassi
al states (2q
fa's). This is avariant on the 2-way quantum �nite automata (2qfa) model whi
h may be simpler to implementthan unrestri
ted 2qfa's; the internal state of a 2q
fa may in
lude a quantum part that may bein a (mixed) quantum state, but the tape head position is required to be 
lassi
al.We show two languages for whi
h 2q
fa's are better than 
lassi
al 2-way automata. First,2q
fa's 
an re
ognize palindromes, a language that 
annot be re
ognized by 2-way deterministi
or probabilisti
 �nite automata. Se
ond, in polynomial time 2q
fa's 
an re
ognize fanbnjn 2 Ng,a language that 
an be re
ognized 
lassi
ally by a 2-way probabilisti
 automaton but only inexponential time.1 Introdu
tionThe theory of quantum 
omputing has had some remarkable su

esses, su
h as Shor's quantumalgorithm for fa
toring integers in polynomial time [21℄ and Grover's algorithm for sear
hing anunordered list of size n with just O(pn) a

esses to the list [11℄. However, these algorithms are forgeneral quantum Turing ma
hines or quantum 
ir
uits. Today's experimental quantum 
omputersare mu
h less powerful|to date, the largest experimental quantum 
omputers implemented 
onsistof just 7 quantum bits (qubits). Therefore, it may be interesting to 
onsider more restri
tedtheoreti
al models of quantum 
omputers. In this paper, we 
onsider the following question: whatis the simplest and most restri
ted model of 
omputation where quantum 
omputers are still morepowerful than their 
lassi
al 
ounterparts? Classi
ally, one of simplest models of 
omputationis a �nite automaton. Quantum �nite automata have been re
ently studied by several authors[2, 3, 5, 15, 17℄.Two models of quantum �nite automata have been 
onsidered. The simplest is 1-way quantum�nite automata (1qfa's) introdu
ed by [15, 17℄. This is very simple model of 
omputation but it isnot very powerful; the languages re
ognized by 1qfa's form a proper subset of the regular languages(languages re
ognized by 1-way deterministi
 automata). A more powerful generalization of thismodel is 1-way qfa's that allow mixed states (de�ned similarly to quantum 
ir
uits with mixedstates [1℄). Any 1-way dfa 
an be easily simulated by a 1-way qfa with mixed states. However,all languages re
ognized by 1-way qfa's with mixed states (with bounded error) are still regular.�This work was done at the University of California, Berkeley, supported by Berkeley Fellowship for GraduateStudies and NSF Grant CCR-9800024.yResear
h supported by Canada's Nser
. 1



The se
ond model is 2-way quantum �nite automata (2qfa's) [15℄. In this model, it is easy tosimulate any deterministi
 automaton and some non-regular languages 
an be re
ognized as well.This implies that 2qfa's are stri
tly more powerful than their 
lassi
al 
ounterparts. However,this model has another disadvantage: it allows superpositions where the head 
an be in multiplepositions simultaneously. To implement su
h a ma
hine, we need at least O(logn) qubits to storethe position of the head (where n is the length of the input). It would be ni
er to have a modelwhere the size of the quantum part does not depend on the length of the input.In this paper, we propose 2-way �nite automata with quantum and 
lassi
al states (2q
fa's), anintermediate model between 1qfa's and 2qfa's. This model is both powerful (2q
fa's 
an triviallysimulate any 
lassi
al automaton and re
ognize some languages that 
lassi
al automata 
annot)and 
an be implemented with a quantum part of 
onstant size.We 
onsider the following two languages:Lpal = fx 2 fa; bg� jx = xRg(the language 
onsisting of all palindromes over the alphabet fa; bg) andLeq = fanbn jn 2 Ng:It has been shown that no probabilisti
 2-way �nite automaton 
an re
ognize Lpal with boundederror in any amount of time [7℄, and that no 
lassi
al 2-way �nite automaton 
an re
ognize Leq(or any other nonregular language) with bounded error in polynomial time [6, 13℄. We prove thatthere exists an exponential time 2q
fa re
ognizing Lpal with bounded probability of error, anda polynomial time 2q
fa re
ognizing Leq with bounded probability of error, thereby giving twoexamples where 2q
fa's are provably more powerful than 
lassi
al 2pfa's.Our 2q
fa's for Lpal and Leq require that the quantum part of the ma
hine 
onsist of only a singlequbit; in essen
e, our 2q
fa's use the quantum state of this qubit to represent and pro
ess 
ertaininformation regarding the input. While the extremely high pre
ision required in manipulatingthis single qubit 
ertainly 
alls into question the pra
ti
alities of these algorithms, it is interestingthat su
h extreme examples of spa
e-eÆ
ien
y/pre
ision trade-o�s exist, parti
ularly in light ofexisting bounds on the amount of information transmittable and a

essible in a single qubit (or�nite 
olle
tion of qubits) [3, 12, 18℄. Furthermore, these results demonstrate that existing lowerbound te
hniques for 
lassi
al �nite automata do not apply in the quantum setting.The remainder of this paper has the following organization. In Se
tion 2 we give a de�nition of2-way �nite automata with quantum and 
lassi
al states. In Se
tion 3 we des
ribe a 2q
fa for Lpaland in Se
tion 4 we give a 2q
fa for Leq. We 
on
lude with Se
tion 5, whi
h in
ludes mention ofvarious open questions relating to this paper.2 De�nitionsIn this se
tion we give our de�nition for 2-way �nite automata with quantum and 
lassi
al states.Informally, we may des
ribe a 2q
fa as a 
lassi
al 2-way �nite automaton that has a

ess to a �xed-size quantum register, upon whi
h it may perform quantum transformations and measurements.The transformations and measurements are determined by lo
al des
riptions of the 
lassi
al portionof the ma
hine, and the results of the measurements may determine the manner in whi
h the
lassi
al part of the ma
hine evolves.Before giving a more formal de�nition of our model, we re
all a few basi
 fa
ts regardingquantum 
omputing. For a more detailed overview of quantum 
omputing, we refer the reader2



to [19℄. Let Q be a �nite set. A superposition of elements in Q is a norm 1 ve
tor in a Hilbert spa
eH of dimension jQj, where ea
h element q 2 Q is identi�ed with an elementary unit ve
tor denotedby jqi. Any superposition may therefore be written in the form Pq2Q �q jqi, where ea
h �q is a
omplex number and we have Pq2Q j�qj2 = 1. In general we denote superpositions as j�i, j i,et
., even when symbols �,  , et
., are not used alone. A unitary operator on H is any invertiblelinear operator that preserves length (equivalently U is unitary if U�1 = U y, where U y denotesthe 
onjugate transpose of U). When we say that we apply the unitary transformation des
ribedby U to a system in a given superposition j i, we mean that the superposition of this system is
hanged a

ording to the mapping j i 7! U j i. A set of operators fPjg on H spe
ify an orthogonalmeasurement (also 
alled a von Neumann measurement) if Pj = P yj and P 2j = Pj for all j, PjPk = 0for j 6= k, and Pj Pj = I. If a superposition j i is measured (or observed) via a measurementdes
ribed by a 
olle
tion fPjg, the following happens: (i) the result of the measurement is j withprobability kPj j i k2 for ea
h j, and (ii) the superposition of the system is 
hanged to 1kPj j ikPj j ifor whi
hever j was the result of the measurement.Now we may de�ne 2q
fa's more pre
isely. A two-way �nite automaton with quantum and
lassi
al states is spe
i�ed by a 9-tupleM = (Q;S;�;�; Æ; q0; s0; Sa

; Srej);where Q and S are �nite state sets (quantum states and 
lassi
al states, respe
tively), � is a �nitealphabet, � and Æ are fun
tions des
ribed below that spe
ify the behavior ofM , q0 2 Q is the initialquantum state, s0 2 S is the initial 
lassi
al state, and Sa

; Srej � S are the sets of (
lassi
al)a

epting states and reje
ting states, respe
tively. We let � = � [ f
; $g be the tape alphabet ofM , where 
 62 � is 
alled the left end-marker and $ 62 � is 
alled the right end-marker.The fun
tion � spe
i�es the evolution of the quantum portion of the internal state: for ea
hpair (s; �) 2 Sn(Sa

 [ Srej) � �, �(s; �) is an a
tion to be performed on the quantum portion ofthe internal state of M . Ea
h a
tion �(s; �) 
orresponds to either a unitary transformation or anorthogonal measurement.The fun
tion Æ spe
i�es the evolution of the 
lassi
al part of M (i.e., the 
lassi
al part of theinternal state and the tape head). In 
ase �(s; �) is a unitary transformation, Æ(s; �) is an elementof S �f�1; 0; 1g spe
ifying a new 
lassi
al state and a movement of the tape head. In 
ase �(s; �)is a measurement, Æ(s; �) is a mapping from the set of possible results of the measurement toS�f�1; 0; 1g (again spe
ifying a new 
lassi
al state and a tape head movement, this time one su
hpair for ea
h out
ome of the observation). It is assumed that Æ is de�ned so that the tape headnever moves left when s
anning the left end-marker 
, and never moves right when s
anning theright end-marker $.On a given input x, a 2q
faM is to operate as follows. Initially, the 
lassi
al part ofM 's internalstate is in state s0, the quantum part of the internal state is in superposition jq0i, and the tape headof M is s
anning the tape square indexed by 0. The tape squares indexed by 1; : : : ; jxj = n 
ontainx1; : : : ; xn, while the squares indexed by 0 and n + 1 
ontain end-markers 
 and $, respe
tively.On ea
h step, the quantum part of the internal state is �rst 
hanged a

ording to �(s; �), wheres is the 
urrent 
lassi
al internal state and � is the 
urrently s
anned tape symbol, and then the
lassi
al internal state and tape head position are 
hanged a

ording to Æ(s; �) (along with theparti
ular result obtained from �(s; �) in 
ase �(s; �) is a measurement).Sin
e the results obtained from ea
h measurement �(s; �) are probabilisti
, the transitionsamong the 
lassi
al parts of a given 2q
fa may be probabilisti
 as well. For ea
h input x, we mayde�ne a probability pa

(x) that a given 2q
fa M eventually enters a 
lassi
al a

epting state, and3



a probability prej(x) that M eventually enters a reje
ting state. A given 
omputation is assumedto halt when either an a

epting or reje
ting 
lassi
al state is rea
hed, so the above events aremutually ex
lusive. We say that a given ma
hine M re
ognizes a language L � �� with one-sidederror � if for all x 2 �� we have pa

(x) + prej(x) = 1, pa

(x) = 1 if x 2 L, and prej(x) � 1 � �if x 62 L. Other notions of re
ognition su
h as two-sided error, zero error, et
., may be de�nedanalogously, but we will only 
onsider one-sided error in this paper.A natural extension of our model is to allow POVM-type measurements (see [20℄, for instan
e)rather than orthogonal measurements. In fa
t this does not 
hange the power of the model sin
ePOVM-type measurements may be simulated by orthogonal measurements and unitary operatorson (possibly) larger quantum systems. It may be the 
ase that one may redu
e the number of statesrequired for various tasks using POVMs, although it is questionable whether this has any physi
alsigni�
an
e.3 Re
ognizing PalindromesIn this se
tion we prove that 2q
fa's 
an re
ognize palindromes with any �xed error bound � > 0,whi
h is an impossible task for 
lassi
al probabilisti
 2-way �nite automata. We �rst de�ne a 2q
fafor this language that uses a quantum register having three orthogonal states, sin
e this is easier todes
ribe than the two orthogonal state (i.e., single qubit) 
ase. On
e we have this, it is simple tomodify the 2q
fa so that it requires a single qubit register, due to the fa
t that the three orthogonalstate ma
hine uses only real amplitudes, along with the fa
t that there is a natural mapping fromthe unit sphere in real three-dimensional Eu
lidean spa
e to the unit sphere in a two-dimensional
omplex Hilbert spa
e.Theorem 1 For any � > 0 there exists a 2q
fa M operating as follows. For any input x 2 fa; bg�,if x is a palindrome then M a

epts x with 
ertainty, and if x is not a palindrome then M a

eptsx with probability at most � and reje
ts x otherwise.In order to prove Theorem 1, we 
onsider the 3� 3 integer matri
es A and B, de�ned as follows.A = 0� 4 3 0�3 4 00 0 5 1A ; B = 0� 4 0 30 5 0�3 0 4 1A : (1)Also de�ne a fun
tion f : Z3 ! Z asf(u) = 4u[1℄ + 3u[2℄ + 3u[3℄;for ea
h u 2 Z3, and de�ne a set K � Z3 asK = �u 2 Z3 : u[1℄ 6� 0 (mod 5); f(u) 6� 0 (mod 5); u[2℄ � u[3℄ � 0 (mod 5)	 :Lemma 2 If u 2 K, then Au 2 K and Bu 2 K.Proof. We show that u 2 K implies Au 2 K; the proof for Bu 2 K is similar. Write u = (a; b; 
)T ,so that Au = (4a + 3b; �3a + 4b; 5
)T . We immediately see (Au)[2℄ � (Au)[3℄ � 0 (mod 5), so itremains to show (Au)[1℄ 6� 0 (mod 5) and f(Au) 6� 0 (mod 5). Sin
e u 2 K, we havea 6� 0 (mod 5); (2)4



f(u) = 4a+ 3b+ 3
 6� 0 (mod 5); (3)and either b � 0 (mod 5) or 
 � 0 (mod 5).Suppose �rst that b � 0 (mod 5). Then we have (Au)[1℄ � 4a (mod 5) andf(Au) = 4(4a + 3b) + 3(�3a + 4b) + 3(5
) � 2a (mod 5):Thus (Au)[1℄ 6� 0 (mod 5) and f(Au) 6� 0 (mod 5) by (2).Now suppose 
 � 0 (mod 5). Then(Au)[1℄ = 4a+ 3b� 4a+ 3b+ 3
 (mod 5)� f(u) (mod 5)and f(Au) = 4(4a+ 3b) + 3(�3a+ 4b) + 3(5
)� 2a+ 4b (mod 5)� 3(4a+ 3b+ 3
) (mod 5)� 3f(u) (mod 5);so that (Au)[1℄ 6� 0 (mod 5) and f(Au) 6� 0 (mod 5) by (3), whi
h 
ompletes the proof.Lemma 3 Let u 2 Z3 satisfy u = Av = Bw for v; w 2 Z3. Then u 62 K.Proof. Assume u = Av = Bw for u; v; w 2 Z3, so that A�1u; B�1u 2 Z3. Sin
e (B�1u)[2℄ 2 Zwe 
on
lude u[2℄ � 0 (mod 5), and sin
e (A�1u)[1℄ 2 Z we 
on
lude 4u[1℄ � 3u[2℄ � 0 (mod 25).Together these 
ongruen
es imply u[1℄ � 0 (mod 5), and hen
e u 62 K.Lemma 4 Let u = Y �11 � � � Y �1n Xn � � � X1(1; 0; 0)T ;where Xj ; Yj 2 fA;Bg. If Xj = Yj for all 1 � j � n, then u[2℄2 + u[3℄2 = 0. Otherwise,u[2℄2 + u[3℄2 > 25�n.Proof. If Xj = Yj for 1 � j � n, then we 
learly have u = (1; 0; 0)T , and thus u[2℄2 + u[3℄2 = 0.Next suppose there exists j su
h that Xj 6= Yj. Note that kuk = 1, sin
e 5�1Xj and 5Y �1j areunitary for ea
h j, and further note that 25nu is integer valued. To prove the lemma it thereforesuÆ
es to prove u 6= �(1; 0; 0)T , sin
e ju[1℄j < 1 implies ju[1℄j � 1� 25�n, and thereforeu[2℄2 + u[3℄2 = 1� u[1℄2 � 1� (1� 25�n)2 > 25�n:Let k be the largest index su
h that Xk 6= Yk, and without loss of generality suppose Xk = A,Yk = B. Write v = Xk�1 � � �X1(1; 0; 0)T and w = Yk�1 � � � Y1(1; 0; 0)T . Sin
e (1; 0; 0)T 2 K, wemust have Av;Bw 2 K by Lemma 2. By Lemma 3 this implies Av 6= Bw, sin
e Av = Bw
ontradi
ts the fa
t that Av;Bw 2 K. Sin
e Xj = Yj for j > k, we therefore haveYn � � � Y1(1; 0; 0)T 6= Xn � � �X1(1; 0; 0)T5



and thus u = Y �11 � � � Y �1n Xn � � � X1(1; 0; 0)T 6= (1; 0; 0)T :By similar reasoning, u 6= (�1; 0; 0)T sin
e (�1; 0; 0)T 2 K and hen
eYn � � � Y1(�1; 0; 0)T 6= Xn � � �X1(1; 0; 0)T :This 
ompletes the proof.Proof of Theorem 1. De�ne Ua and Ub to be unitary operators as follows:Ua jq0i = 45 jq0i � 35 jq1i ; Ub jq0i = 45 jq0i � 35 jq2i ;Ua jq1i = 35 jq0i+ 45 jq1i ; Ub jq1i = jq1i ;Ua jq2i = jq2i ; Ub jq2i = 35 jq0i+ 45 jq2i ;and de�ne M to be a 2q
fa as des
ribed in Figure 1. (The parameter k will be spe
i�ed belowa

ording to the error bound �.)Repeat ad in�nitum:Move the tape head to the �rst input symbol and set the quantumstate to jq0i.While the 
urrently s
anned symbol is not $, do the following: (I)Perform U� on the quantum state, for � denoting the
urrently s
anned symbol.Move the tape head one square to the right.Move the tape head left until the 
 symbol is rea
hed.Move the tape head one square to the right.While the 
urrently s
anned symbol is not $, do the following: (II)Perform U�1� on the quantum state, for � denoting the
urrently s
anned symbol.Move the tape head one square to the right.Measure the quantum state: if the result is not q0 then reje
t.Set b = 0.While the 
urrently s
anned symbol is not 
, do the following: (III)Simulate k 
oin-
ips. Set b = 1 in 
ase all results are not\heads".Move the tape head one square to the left.If b = 0, a

ept. Figure 1: A 2q
fa for palindromes.The a
tion of M on input x = x1x2 � � � xn is as follows. The ma
hine starts with its quantumstate in superposition jq0i. As while-loop (I) is exe
uted, the tape head moves over ea
h input6



symbol and performs either the transformation Ua or Ub on the quantum state (depending onwhether the symbol s
anned is a or b). Letting Xj denote the matrix A or B, as de�ned in (1),depending on whether xj is a or b, we see that the superposition of the quantum state of M afterperforming loop (I) is �0 jq0i+ �1 jq1i+ �2 jq2ifor (�0; �1; �2)T = 5�nXn � � �X1(1; 0; 0)T . At this point, the tape head is moved ba
k to the �rstinput symbol and while-loop (II) is performed. A pro
ess similar to while-loop (I) is performed(ex
ept the inverses of Ua and Ub are applied instead of Ua and Ub), yielding superposition�0 jq0i+ �1 jq1i+ �2 jq2ifor (�0; �1; �2)T = X�1n � � �X�11 Xn � � �X1(1; 0; 0)T . Now the quantum state is measured: M reje
tswith probability prej = �21 +�22 , and otherwise the quantum state 
ollapses to jq0i with probability�20 . By Lemma 4 we 
on
lude prej = 0 in 
ase x is a palindrome, and prej > 25�n otherwise.Finally, M sets the variable b (stored in its 
lassi
al internal state) to 0, exe
utes while-loop (III),and a

epts if the while-loop terminates with b still set to 0; it may be 
he
ked that this happenswith probability pa

 = 2�k(n+1).This sequen
e of steps is repeated inde�nitely, 
ausing M to eventually reje
t with probabilityXj�0(1� pa

)j(1� prej)jprej = prejpa

 + prej � pa

prejand a

ept with probabilityXj�0(1� pa

)j(1� prej)j+1pa

 = pa

 � pa

prejpa

 + prej � pa

prej :These probabilities 
learly sum to 1, and the probability of a

eptan
e is therefore 1 in 
ase x is apalindrome. Letting k � maxflog 25;� log �g, we see that if x is not a palindrome, then M reje
tswith probability at least 1� �, whi
h 
ompletes the proof.We now outline how this 2q
fa may be modi�ed so that a only single qubit is used. De�ne amapping � from the unit sphere in R3 to the unit sphere in C 2 as follows:�(
os� jq0i+ sin� sin jq1i+ sin� 
os jq2i) = e�i =2 
os �2 j0i+ ei =2 sin �2 j1i ;and de�ne bUa j0i = 
os �2 j0i � i sin �2 j1i ; bUb j0i = 
os �2 j0i+ sin �2 j1i ;bUa j1i = �i sin �2 j0i+ 
os �2 j1i ; bUb j1i = � sin �2 j0i+ 
os �2 j1i ;for � = tan�1(4=3). It may be veri�ed that the following relations hold:bUa �(�0 jq0i+ �1 jq1i+ �2 jq2i) = ei��(Ua(�0 jq0i+ �1 jq1i+ �2 jq2i))bUb �(�0 jq0i+ �1 jq1i+ �2 jq2i) = ei��(Ub(�0 jq0i+ �1 jq1i+ �2 jq2i));where ei� represents a phase fa
tor (possibly depending on �0, �1, and �2) that will not a�e
t theoperation of the ma
hine. The proof of this 
laim follows from a mu
h more general relationship7



between rigid rotations in three dimensions and unitary transformations in two dimensions; see,for instan
e, [16℄ for further dis
ussion. (See also Se
tion 2.3.2 in [20℄.) Note here that we haveex
hanged the x and z 
oordinates from the mappings des
ribed in these referen
es in order to allowthe observations to fun
tion 
orre
tly. Clearly we have that an observation of the state �(jq0i) (inthe fj0i ; j1ig basis) yields j0i with probability 1, and an observation of �(�0 jq0i+�1 jq1i+�2 jq2i)yields j1i with probability at least (1�p1� Æ)=2 � Æ=4 in 
ase �21+�22 � Æ. Thus, by substitutingtransformation bUa for Ua, bUb for Ub, adjusting k as ne
essary, and letting j0i be the initial stateof the quantum register in the ma
hine 
onstru
ted above, we obtain a 2q
fa for palindromes thatuses a single qubit.4 Re
ognizing anbnThe se
ond language that we 
onsider is fanbnjn 2 Ng. It is non-regular but 
an be re
ognized bya 2-way probabilisti
 �nite automaton [9℄. However, any 2-way probabilisti
 automaton re
ogniz-ing it runs in exponential expe
ted time [10℄. (More generally, a similar result is true for 2-wayprobabilisti
 automata re
ognizing any nonregular language [6, 13℄.)In the quantum world, this language 
an be re
ognized by a 2qfa [15℄. However, this 2qfauses superpositions where the head of the qfa is in di�erent pla
es for di�erent 
omponents of thesuperposition and, therefore, 
annot be implemented with a quantum part of �nite size. In thispaper, we show that this language 
an be also re
ognized by a 2q
fa in polynomial time.Theorem 5 For any � > 0, there is a 2q
fa M that a

epts any x 2 fanbnjn 2 Ng with 
ertainty,reje
ts x =2 fanbnjn 2 Ng with probability at least 1 � � and halts in expe
ted time O(m4) where mis the length of the word x.Proof: The main idea is as follows:We 
onsider a q
fa M with 2 quantum states jq0i and jq1i. M starts in the state jq0i. Everytime when M reads a, the state is rotated by angle � = p2� and every time when M reads b, thestate is rotated by ��. When the end of the word is rea
hed, M measures the state. If it is jq1i,the word is reje
ted. Otherwise, the whole pro
ess is repeated.If the number of a's is equal to the number of b's, rotations 
an
el one another and the �nalstate is q0. Otherwise, the �nal state is di�erent from q0 be
ause p2 is irrational. Moreover, theamplitude of q1 in the �nal state is suÆ
iently large1. Therefore, repeating the above pro
ess O(n2)times guarantees getting q1 at least on
e (and reje
ting the input) with a high probability.We also need that M halts on inputs x 2 fanbnjn 2 Ng (instead of repeating the above pro
essforever). To a
hieve that, we periodi
ally exe
ute a subroutine that a

epts with a small probability
n2 . If the word is not in language, this does not have mu
h in
uen
e be
ause this probability ismu
h smaller than the probability of getting q1 in one run. The resulting automaton is des
ribedin Figure 2.Next, we show that this automaton re
ognizes fanbnjn 2 Ng. It is enough to 
onsider its a
tionon words of form anbn0 (be
ause all other words are reje
ted by it at the very beginning). We startwith two lemmas that bound the probabilities of a

epting after loop (I) and reje
ting after loop(II).1This relies on a property of p2 and is not true for an arbitrary irrational number instead of p2.8



Che
k (
lassi
ally) whether the input is of form a�b�. If not, reje
t.Otherwise, repeat ad in�nitum:Move the tape head to the �rst input symbol and set the quantumstate to jq0i.While the 
urrently s
anned symbol is not $, do: (I)If the 
urrently s
anned symbol is a, perform U� on thequantum state.If the 
urrently s
anned symbol is b, perform U�� on thequantum state.Move the tape head one square to the right.Measure the quantum state. If the result is not q0, reje
t.Two times repeat: (II)Move the tape head to the �rst input symbolMove the tape head one square to the right.While the 
urrently s
anned symbol is not 
 or $, do: (III)Simulate a 
oin 
ip. If the result is "heads", move right.Otherwise, move left.If both times the pro
ess ends at the right end-marker $, do:Simulate k 
oin-
ips. If all results are not \heads", a

ept.Figure 2: A 2q
fa for anbn.Lemma 6 If the input is x = anbn0 and n0 6= n, M reje
ts after loop (I) with probability at least12(n� n0)2 :Proof: In this 
ase, the state jq0i gets rotated by p2(n � n0)�. The superposition after rotatingjq0i by p2(n� n0)� is 
os(p2(n� n0)�) jq0i+ sin(p2(n� n0)�) jq1i :The probability of observing jq1i is sin2(p2(n� n0)�). We bound this probability from below.Let k be the 
losest integer to p2(n � n0). Assume that p2(n � n0) > k. (The other 
ase issymmetri
.) Then, k � p2(n� n0)2 � 1 (be
ause k2 is integer and 2(n � n0)2 � 1 is the largestinteger that is smaller than (p2(n� n0))2). We have(p2(n� n0)�p2(n� n0)2 � 1)(p2(n� n0) +p2(n� n0)2 � 1)= 2(n� n0)2 � 2(n� n0)2 + 1 = 1;p2(n� n0)� k � p2(n� n0)�p2(n� n0)2 � 1= 1p2(n� n0) +p2(n� n0)2 � 1 > 12p2(n� n0) :9



We have 0 < p2(n � n0) � k < 1=2 (be
ause k is the 
losest integer). For any x 2 [0; 1=2℄,sin(x�) � 2x (be
ause this is true for x = 0 and x = 1=2 and sin is 
on
ave in this interval).Therefore, sin2(p2(n� n0)�) = sin2((p2(n� n0)� k)�) � 4(p2(n� n0)� k)2� 4� 12p2(n� n0)�2 = 12(n� n0)2 :Lemma 7 Ea
h exe
ution of (II) leads to a

eptan
e with probability12k(n+ n0 + 1)2 :Proof: Ea
h loop (III) is just a random walk starting at lo
ation 1 (the �rst symbol of anbn0) andending either at lo
ation 0 (the left end-marker 
) or lo
ation n+n0+1 (the right end-marker $). Itis a standard result in probability theory (see Chapter 14.2 of [8℄) that the probability of rea
hingthe lo
ation n+ n0 + 1 is exa
tly 1n+n0+1 . Repeating it twi
e and 
ipping k 
oins afterward givesthe probability 1=2k(n+ n0 + 1)2.We sele
t k = 1+ dlog �e. If x = anbn, then the loop (I) always returns jq0i to jq0i andM neverreje
ts. The probability of M a

epting after 
n2 exe
utions of (II) is1��1� 12k(n+ n0 + 1)2�
n2and this 
an be made arbitrarily 
lose to 1 by sele
ting an appropriate 
onstant 
.On the other hand, if x = anbn0 and n 6= n0, M reje
ts after (I) with probability prej >1=2(n�n0)2 and a

epts after (II) with probability pa

1=2k(n+n0+1)2 � �=2(n+n0+1)2. If thisis repeated inde�nitely, the probability of reje
ting isXk�0(1� pa

)k(1� prej)kprej = prejpa

 + prej � pa

prej> prejpa

 + prej > 1=21=2 + �=2 = 11 + � > 1� �:In both 
ases, the expe
ted number of iterations of (I) and (II) before M a

epts or reje
ts isO((n+n0)2) (be
ause, in every iteration,M a

epts or reje
ts with probability at least 
=(n+n0)2).Loop (I) takes O(n+ n0) time and ea
h random walk in (II) takes O((n + n0)2) time. Hen
e, theexpe
ted running time of M is at most O((n+ n0)4).5 Con
lusionIn this paper we have introdu
ed 2-way �nite automata with quantum and 
lassi
al states, andgiven two examples of languages for whi
h 2q
fa's outperform 
lassi
al probabilisti
 2-way �niteautomata: Lpal = fx 2 fa; bg� jx = xRg and Leq = fanbn jn 2 Ng. It is natural to ask whatother languages 
an be re
ognized by 2q
fa's. For instan
e, 
an any of the following languages bere
ognized by 2q
fa's? 10



Lmiddle = fxay jx; y 2 fa; bg�; jxj = jyjg.Lbalan
ed = fx 2 f ( ; ) g� jparentheses in x are balan
edg.Lsquare = nanbn2 jn 2 No.Lpower = �anb2n jn 2 N	.If so, 
an any of these languages be re
ognized by polynomial time 2q
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