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ABSTRACTWe de�ne and analyze quantum 
omputational variants ofrandom walks on one-dimensional latti
es. In parti
ular,we analyze a quantum analog of the symmetri
 randomwalk, whi
h we 
all the Hadamard walk. Several strikingdi�eren
es between the quantum and 
lassi
al 
ases are ob-served. For example, when unrestri
ted in either dire
tion,the Hadamard walk has position that is nearly uniformlydistributed in the range [�t=p2; t=p2℄ after t steps, whi
his in sharp 
ontrast to the 
lassi
al random walk, whi
h hasdistan
e O(pt) from the origin with high probability. Withan absorbing boundary immediately to the left of the start-ing position, the probability that the walk exits to the left is2=�, and with an additional absorbing boundary at lo
ationn, the probability that the walk exits to the left a
tuallyin
reases, approa
hing 1=p2 in the limit. In the 
lassi
al
ase both values are 1.
1. INTRODUCTIONClassi
al random walks are very well-studied pro
esses. Inthe simplest variation, a single parti
le moves on a two-wayin�nite, one-dimensional latti
e. At ea
h step, the parti
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moves one position left or right, depending on the 
ip of afair 
oin. Su
h random walks may be generalized to more
ompli
ated latti
es and to �nite or in�nite graphs, and havehad several interesting appli
ations in 
omputer s
ien
e (see,for instan
e, [3, 8, 20, 22℄, as well as the dis
ussion below).We refer the reader to Kemeny and Snell [21℄ for basi
 fa
tsregarding random walks.In this paper we 
onsider quantum variations of randomwalks on one-dimensional latti
es|we refer to su
h pro-
esses as quantum walks.In dire
t analogy to 
lassi
al random walks, one mayna��vely try to de�ne quantumwalks on the line as follows: atevery time step, the parti
le moves, in superposition, bothleft and right with equal amplitudes (perhaps with a relativephase di�eren
e). However, su
h a walk is physi
ally impos-sible, sin
e the global pro
ess is ne
essarily non-unitary. Itis also easy to verify that the only possible translationallyinvariant unitary pro
esses on the line allowing only tran-sitions between adja
ent latti
e sites are the left and rightshift operators, up to an overall phase [24℄. These pro
essessimply 
orrespond to motion in a single dire
tion.If the parti
le has an extra degree of freedom that assistsin its motion, however, then it is possible to 
onstru
t moreinteresting translation invariant lo
al unitary pro
esses.Consider a quantum parti
le that moves freely on the in-teger points on the line, and has an additional degree offreedom, its 
hirality, that takes values right and left. Awalk on the line by su
h a parti
le may be des
ribed as fol-lows: at every time step, its 
hirality undergoes a unitarytransformation and then the parti
le moves a

ording to its(new) 
hirality state. Figure 1 depi
ts this two-stage move ina quantum walk where the 
hirality undergoes a Hadamardtransformation. We 
all this parti
ular walk the Hadamardwalk.Although the Hadamard walk looks similar to the 
lassi
alrandom walk, its behavior is in fa
t strikingly di�erent. Thereason for this is quantum interferen
e. Whereas there 
an-not be destru
tive interferen
e in a 
lassi
al random walk,in a quantum walk two separate paths leading to the samepoint may be out of phase and 
an
el one another.Our motivation for studying quantum walks is two-fold.First, we believe that quantum walks have the potential too�er new tools for quantum algorithms, and se
ond, we be-lieve that te
hniques developed for analyzing quantumwalksmay yield te
hniques for analyzing dis
rete quantum pro-
esses (and quantum algorithms in parti
ular) more gener-ally.Quantum walks on graphs have the potential for o�ering asystemati
 way of speeding up 
lassi
al algorithms based onrandom walks. Well-known examples of algorithms based onrandom walks in
lude algorithms for 2-Satis�ability, GraphConne
tivity, and probability ampli�
ation (see, e.g., [25℄).Re
ently, S
h�oning [29℄ dis
overed a random walk based al-
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s of the Hadamard walk. In (a)we begin at time t with a parti
le in 
hirality state rightor left. The result of the Hadamard transformation isshown in (b), the parti
le is now in an equal superposition ofleft and right 
hirality states (with the amplitudes indi-
ated) and then moves a

ordingly (
) to generate the stateat time t+ 1.gorithm similar to that of Papadimitriou [27℄ that gives a themost eÆ
ient known solution to 3SAT. In general, Markov
hain simulation has emerged as a powerful algorithmi
 tooland has had a profound impa
t on random sampling andapproximate 
ounting [18℄. Among its numerous appli
a-tions are estimating the volume of 
onvex bodies [10℄ (seealso [23℄ for re
ent progress on this problem) and approxi-mating the permanent [17℄. Very re
ently, Jerrum, Sin
lairand Vigoda [19℄ used this approa
h to solve the long stand-ing open problem of approximating the permanent for non-negative matri
es.Despite the fa
t that our quantum walks are easy to de-s
ribe, 
ertain variants (in parti
ular the 
ase where the walkhas absorbing boundaries) seem to be quite diÆ
ult to an-alyze. Standard te
hniques for analyzing 
lassi
al randomwalks are apparently of little use. Analysis of more 
ompli-
ated quantum pro
esses, su
h as 
ertain natural de�nitionsfor quantum walks on arbitrary �nite graphs, seem to beout of our rea
h at the present time. However, as quantumalgorithm design be
omes more sophisti
ated, we believe itwill be inevitable to develop methods for a

urately analyz-ing dis
rete quantum pro
esses. This paper represents onestep toward this goal.
Overview of resultsIn this paper, we analyze in detail the dynami
s of theHadamard walk on the line. We study two basi
 variationsof the Hadamard walk, whi
h 
orrespond to walks with andwithout absorbing boundaries. Both 
ases illustrate sur-prising behavior that unders
ores the di�eren
es betweenquantum and 
lassi
al pro
esses.Our most a

urate analyses are for quantum walks with-out absorbing boundaries. In the 
lassi
al 
ase, it is well-known that a random walk on a (two-way in�nite) line hasexpe
ted distan
e �(pt) from the origin at time t, and theprobability of being at a distan
e 
(t) from the origin isexponentially small. In 
ontrast, observation of a quantumparti
le doing a Hadamard walk on the line after t stepsyields an expe
ted distan
e �(t) from the origin. Moreover,the lo
ation of the parti
le is almost uniformly distributedover the interval [�t=p2; t=p2℄, so that the quantum walkspreads quadrati
ally faster than the 
lassi
al random walk.This also implies that the analogously de�ned walk on

the 
ir
le mixes in linear time. This is in 
ontrast with the
lassi
al random walk, whi
h mixes in quadrati
 time. Inthis paper, by the Æ-mixing time of a walk we mean the�rst time (independent of the initial position) at whi
h thedistribution indu
ed by the walk is Æ-
lose to uniform intotal variation distan
e.The presen
e of absorbing boundaries apparently 
ompli-
ates the analysis of the asso
iated quantum walks 
onsid-erably. For the 
ase of quantum walks with boundaries, wefo
us on the question of determining exit probabilities of thewalks.First, we 
onsider the 
ase where we have a single ab-sorbing boundary one lo
ation to the left of the origin|thepro
ess is terminated if the parti
le rea
hes this lo
ation.It is well known that in the 
lassi
al 
ase the random walkexits with probability 1. In 
ontrast, the quantum walk ex-its with probability 2=�. Thus, a 
onsiderable part of thequantum state keeps going in�nitely in the other dire
tion(to the right) without ever returning to the origin.We then 
onsider the 
ase where there is a se
ond ab-sorbing boundary n positions to the right of the origin forsome arbitrary n. The pro
ess is terminated if the parti
lerea
hes either absorbing boundary. Naturally, the presen
eof the se
ond boundary de
reases the probability of rea
h-ing the left boundary in the 
lassi
al 
ase: the walk exitsfrom the left with probability n=(n+1). Again surprisingly,in the quantum 
ase, adding the se
ond boundary on theright a
tually in
reases the 
han
e of rea
hing the bound-ary on the left (so long as the se
ond boundary allows theparti
le at least two non-boundary lo
ations on whi
h towalk). In the limit for large n, the probability of rea
hingthe left boundary tends to 1=p2 (and not 2=�). The reasonfor this strange behavior is, again, the quantum interfer-en
e. Adding a right boundary removes a part of the quan-tum state (the part that rea
hes the right boundary), whi
hwould otherwise have interfered destru
tively with anotherpart of the state rea
hing the left boundary. Thus, removinga part of the quantum state at the right boundary in
reasesthe 
han
e of rea
hing the left boundary.
Overview of methodsWe will rely on two general ideas for analyzing the quantumpro
esses in this paper, the path integral approa
h and theS
hr�odinger approa
h. Ea
h approa
h has its advantages.To use the path integral approa
h, one expresses the am-plitude of a given state as a sum or integral, over all possiblepaths leading to that state, of the amplitude of taking thatpath. In our 
ase, sin
e the pro
esses we 
onsider involvedis
rete quantum systems, the amplitude is given as a 
om-binatorial sum.In pra
ti
e, however, there are still diÆ
ulties, be
ausethe sums involve heavy 
an
ellation. We get around thesediÆ
ulties in various ways. For the in�nite walk, we use amethod due to Gosper and Zeilberger to obtain a re
urren
erelation for the sum, whi
h leads to useful approximations.We also relate the sums to 
lassi
al orthogonal polynomials,from whi
h their asymptoti
 values 
an be derived. Forthe �nite walks, we study the generating fun
tions of theamplitudes. This requires methods from real and 
omplexanalysis, in
luding a (possibly new) nonlinear version of theRiemann-Lebesgue lemma.The S
hr�odinger approa
h takes advantage of the timeand spa
e homogeneity of the quantum walk. The 
ru
ial



observation is that be
ause of its translational invarian
e,the walk has a simple des
ription in Fourier spa
e. TheFourier transform of the amplitude is thus easily analyzed,and transformed ba
k to the spatial domain. It is notewor-thy that this te
hnique is standard in the analysis of 
lassi
alrandom walks [9℄.A key advantage of the S
hr�odinger approa
h is that theFourier integrals for the amplitudes are amenable to anal-ysis in standard ways. There is a well-developed theory ofthe asymptoti
 expansion of integrals that allows us to de-termine the behavior of the wave fun
tion in the limit [4,5℄. This gives another asymptoti
 form for the probabilitydistribution. The S
hr�odinger approa
h is also quite generaland 
ould be potentially applied to quantum walks on anyCayley graph.
Related workVarious quantum variants of random walks have previouslybeen studied by a few authors [6, 12, 24, 32℄, but their resultsare, for the most part, unrelated to ours.The �rst study of quantum walks is apparently due toMeyer [24℄. Meyer's model (quantum latti
e gas automataor QLGA) is equivalent to our two-way in�nite Hadamardwalk, but he addresses di�erent questions than the ones we
onsider. After obtaining a formula for the amplitudes ofthe walk as a sum of binomial 
oeÆ
ients (whi
h we stateas Lemma 4), Meyer pro
eeds to analyzing the 
ontinuous-time limit of QLGA and shows that this limit is given by theDira
 equation [13℄. The results about the 
ontinuous-timelimit apparently do not imply anything for the dis
rete 
asethat we study in this paper.Farhi and Gutmann [12℄ and Childs, Farhi and Gutmann[6℄ analyze quantum walks on trees and exhibit 
olle
tionsof graphs on whi
h the quantum pro
ess hits one parti
ularnode exponentially faster than the 
orresponding 
lassi
alpro
ess. The de�nition for quantum walks 
onsidered inthese papers is 
ompletely di�erent from ours.One of us [32℄ has 
onsidered unitary pro
esses based onquantum walks on regular graphs in the 
ontext of spa
e-bounded 
omputation. In that paper the quantum pro-
esses 
onsidered are mu
h di�erent from those we study,as they were designed to suppress quantum e�e
ts (in orderto 
losely approximate 
lassi
al random walks on graphs)rather than take advantage of the quantum e�e
ts.Finally, Aharonov, Ambainis, Kempe and Vazirani [2℄have re
ently studied quantum walks on graphs and theirmixing behavior. They 
onsider a di�erent notion of mixingfor quantum walks, and show that a quantum walk on an n-
y
le mixes in time O(n log n) (with respe
t to their notionof mixing). They also show a lower bound of 1=d� for thismixing time for general graphs, where d is the maximumdegree of a vertex in the graph and � is its 
ondu
tan
e.
Organization of the paperThe rest of this paper is organized as follows. Se
tion 2
ontains formal de�nitions of the quantum walks we study.Se
tion 3 states the results of our paper in detail. Se
tion4 gives proofs of our results on unrestri
ted quantum walks,and Se
tion 5 does the same for quantum walks with bound-aries. We 
on
lude with Se
tion 6, whi
h mentions a fewdire
tions for further work.

2. DEFINITIONSIn this se
tion we formally de�ne our notion of quantumwalks.Let Z denote the integers and let � = fR;Lg. We makethe identi�
ation R = right, L = left. The quantumsystems we 
onsider will have the underlying 
lassi
al stateset Z��. We view a state (n; d) 2 Z�� as 
onsisting of alo
ation n and a dire
tion d.The (pure) quantum states of our systems may be identi-�ed with unit ve
tors in the Hilbert spa
e `2(Z)
 `2(�), forwhi
h the set fjnijdi : n 2 N; d 2 �g forms an orthonormalbasis. Ea
h state jnijdi is identi�ed with the 
lassi
al state(n; d).The quantum walk we fo
us on is the Hadamard walk,whi
h was dis
ussed informally in the previous se
tion. TheHadamard walk is based on the Hadamard transform, whi
his denoted H and a
ts on `2(�) as follows:H : jRi 7! 1p2(jRi+ jLi); H : jLi 7! 1p2(jRi � jLi):(Here and throughout this paper, when we des
ribe a trans-formation on basis elements, it is assumed to be extended tothe entire spa
e by linearity.) To apply the Hadamard trans-form to the dire
tion 
omponent of a parti
le (its 
hirality)means that we tensor with the identity:(I 
H) : jnijRi 7! 1p2 jni(jRi+ jLi)(I 
H) : jnijLi 7! 1p2 jni(jRi � jLi)Next, de�ne the translation operator T by the following a
-tion on basis states:T : jnijRi 7! jn+ 1ijRi;T : jnijLi 7! jn� 1ijLi:The operator T simply 
orresponds to moving a parti
le onestep left or right a

ording to its 
hirality. Finally, de�neWas W = T (I 
H). Clearly W is unitary. The operator Wrepresents one step of a Hadamard walk.In order to dis
uss quantum walks further in a physi
allymeaningful way, we must 
onsider measurements of the par-ti
le doing the quantum walk. Consider �rst the situationwhere our parti
le starts in the state j0ijRi and we alternatethe following two steps: (i) apply the operator W , and (ii)measure the lo
ation of the parti
le. It is easy to see that weobtain pre
isely a 
lassi
al unbiased random walk. However,without su
h observations that serve to \
ollapse" the stateof the system after ea
h appli
ation of W , the behavior ofthe walk is mu
h di�erent (sin
e di�erent paths will interferewith one another).We will 
onsider three di�erent pro
esses based on theHadamard walk, whi
h represent the 
ases where we havezero, one, or two absorbing boundaries. Pre
ise des
riptionsof these pro
esses follow.
Two-way infinite timed Hadamard walkThe simplest pro
ess we 
onsider is the two-way in�nitetimed Hadamard walk. The pro
ess is as follows.1. Initialize the system in 
lassi
al state j0ijRi.2. For any 
hosen number of steps t, apply W to the systemt times, then observe the lo
ation.



Semi-infinite Hadamard walkFor the se
ond pro
ess we introdu
e an absorbing boundary.This is done by 
onsidering a measurement that 
orrespondsto the question \Is the system at lo
ation n?". This mea-surement may be des
ribed as 
orresponding to the proje
-tion operators �nyes = jnihnj 
 I� (where I� is the identityon `2(�) and �nno = I � �nyes (where I denotes the identityon `2(Z)
 `2(�)). For example, suppose a system is in thestate 12 j0ijRi � 12 j0ijLi+ 12 j2ijRi+ 12 j4ijLiand is observed using the above measurement for n = 0.The answer obtained is \yes" with probability



�0yes �12 j0ijRi � 12 j0ijLi+ 12 j2ijRi+ 12 j4ijLi�



2= 



12 j0ijRi � 12 j0ijLi



2 = 12 ;in whi
h 
ase the state of the system 
ollapses to1p2(j0ijRi � j0ijLi);and the answer is \no" with probability 1/2, in whi
h 
asethe system 
ollapses to state1p2(j2ijRi+ j4ijLi):Now we are ready to de�ne our se
ond quantum pro
ess:1. Initialize the system in 
lassi
al state j1ijRi.2. a. Apply W .b. Observe the system a

ording to f�0yes ;�0nog (i.e.,measure the system to see whether it is or is not atlo
ation 0).3. If the result of the measurement was \yes" (i.e., revealedthat the system was at lo
ation 0), then terminate thepro
ess, otherwise repeat step 2.
Finite Hadamard walkThe third and �nal pro
ess we 
onsider is similar to these
ond, ex
ept that two absorbing boundaries are presentrather than one. Spe
i�
ally, using the same measurementsas de�ned for the semi-in�nite quantum walk, we 
onsiderthe following pro
ess:1. Initialize the system in 
lassi
al state j1ijRi.2. a. Apply W .b. Observe the system a

ording to f�0yes ;�0nog
. Observe the system a

ording to f�nyes ;�nnog (for some�xed n > 1).3. If the result of either measurement was \yes" (i.e., re-vealed that the system was either at lo
ation 0 or lo
ationn), then terminate the pro
ess, otherwise repeat step 2.

Mixing timesOne of the properties of quantum walks we will study is howfast the parti
le \di�uses" in spa
e. This is traditionallydone by analyzing the mixing time.Consider an ergodi
 Markov 
hainM on the state spa
e V ,starting at state u 2 V , whi
h indu
es a probability distri-bution Pu(�; t) on the states at time t. Let �(�) denote thestationary distribution of the 
hainM. The mixing time ��is de�ned as follows:�� = maxu mint �t : 

Pu(�; t0)� � 

 � � 8t0 � t	:In other words, it is the �rst time t su
h that Pu(�; t0) stayswithin total variation distan
e � (i.e., `1 distan
e 2�) of � atall subsequent time steps t0 � t, irrespe
tive of the initialstate.In the 
ase of unitary Markov 
hains on a �nite statespa
e, su
h as �nite graph analogues of the quantum walkwe 
onsider, no stationary distribution exists. In fa
t, thepro
ess is (approximately) periodi
, sin
e it 
orresponds torepeated transformation of the state by a �xed a unitarymatrix. In this 
ontext, a more appropriate de�nition formixing time is the following, where we measure distan
efrom a desired target distribution � on the state spa
e, andrelax the 
ondition that the probability distribution be 
loseto it at all future time steps:�� = maxu mint ft : kPu(�; t)� � k � �g:We use this notion of mixing in our paper. (See [2℄ for otherpossible notions of mixing.)
3. STATEMENT OF RESULTS

Results for two-way infinite timed quantum walksTo study the properties of quantum walks, we 
onsider thewave fun
tion des
ribing the position of the parti
le andanalyze how it evolves with time. Let	(n; t) = �  L(n; t) R(n; t)�be the two 
omponent ve
tor of amplitudes of the parti
lebeing at point n at time t, with the 
hirality being left(upper 
omponent) or right (lower 
omponent). Similarly,let P (n; t) = pL(n; t) + pR(n; t)be the probability of being at position n at time t. Forthe initial 
ondition we will fo
us on 	(0; 0) = (0; 1)T and	(n; 0) = (0; 0)T for n 6= 0. We will let � = n=t throughoutthe paper.The asymptoti
s reveal the following properties of theprobability distribution. The wave fun
tion is almost uni-formly spread over the region for whi
h � is in the inter-val [�1=p2; 1=p2℄, and shrinks qui
kly outside this region.This behavior is des
ribed in detail by the following theo-rems. In these theorems, we assume n � t mod 2, sin
e theamplitudes are 0 otherwise.Theorem 1. Let n = �t ! 1 with � �xed. In 
ase�1 < � < �1=p2 or 1=p2 < � < 1, there is a 
 > 1 forwhi
h pR(n; t) = O(
�n) and pL(n; t) = O(
�n).



Theorem 2. Let � > 0 be any 
onstant, and � be in theinterval (�1p2 + �; 1p2 � �). Then, as t ! 1, we have (uni-formly in n)pL(n; t) � 2�p1� 2�2 t 
os2 �� !t+ �4 � ��;pR(n; t) � 2(1 + �)�(1� �)p1� 2�2 t 
os2 ��!t+ �4 � ;where ! = ��+�, � = arg(�B+p�), � = arg(B+2+p�),B = 2�=(1� �), and � = B2 � 4(B + 1).This theorem has several 
onsequen
es. First, by integrat-ing the expression of Theorem 2, we 
an see that almost allof the probability (1� 2�� � O(1)t ) is 
on
entrated in the in-terval [(�1=p2+�)t; (1=p2��)t℄. Se
ond, we see that thereare 
(t) lo
ations at whi
h the 
osine-squared in Theorem2 is 
lose to 1, and therefore pL or pR is 
( 1t ). This impliesthat the quantum walk on the line is mixing in linear time.Theorem 3. Let �t denote the uniform distribution onZ\ [�t=p2; t=p2℄. There is a 
onstant Æ < 1 su
h that forall t suÆ
iently large, kP (�; t)� �tk � Æ.
Methods for two-way infinite timed quantum walksThe results des
ribed above 
an be obtained by two meth-ods. These methods are dis
rete 
ounterparts of the pathintegral and S
hr�odinger approa
hes in quantum me
hani
s.The two approa
hes di�er in power, but ea
h has its ad-vantage. The path integral approa
h gives Theorem 1 anda version of Theorem 2 with a weaker 
onvergen
e guar-antee. The S
hr�odinger approa
h gives Theorem 2 and aweaker version of Theorem 1 (with O(1=nd) for all d insteadof O(
�n)). It would be interesting to try to re�ne theseapproa
hes so that both give the stronger versions of theresults.We �rst sket
h the path integral approa
h. The fastestway to 
ompute the amplitudes is to determine the signedpath 
ounts, by a re
urren
e relation reminis
ent of Pas
al'striangle, and then divide by the appropriate power of p2.This determines all 	(n; t0) for t0 � t with O(t2) operations.To analyze these amplitudes, however, it is better to startfrom an expli
it formula.Lemma 4. [24℄ Let �n � t < n. De�ne ` = t�n2 . Theamplitudes of position n after t steps of the Hadamard walkare:  L(n; t) = 1p2t Xk  `� 1k ! t� `k !(�1)`�k�1 (1) R(n; t) = 1p2t Xk  `� 1k � 1! t� `k !(�1)`�k: (2)The boundary 
ase t = n requires a separate handling(the formulas (1) and (2) do not work) but is easy.The sums of binomial 
oeÆ
ients in (1) and (2) are dis-
rete 
ounterparts of path integrals in quantum me
hani
s.The amplitudes in Lemma 4 
an be expressed using val-ues of 
lassi
al orthogonal polynomials. Let J(a;b)� (z) be thenormalized degree � Ja
obi polynomial as in [30, p. 29℄ andJ(a;b)� its 
onstant term.

Lemma 5. Let n > 0 and � = (t� n)=2� 1. We havepL(n; t) = 2�n�2 �J(0;n+1)� �2pR(n; t) = � t+ nt� n�2 2�n�2 �J(1;n)� �2 :The Ja
obi polynomial representation immediately givesthe following symmetries, whi
h allow us to 
onsider valuesof n with one sign only.Theorem 6. We havepL(�n; t) = pL(n� 2; t)pR(�n; t) = � t� nt+ n�2 pR(n; t):We then �nd asymptoti
 approximations to the ampli-tudes via large-parameter asymptoti
s for Ja
obi polyno-mials [7℄. This uses the Darboux method, starting from agenerating fun
tion for J� .The se
ond approa
h we 
onsider is a Fourier analysis ofthe Hadamard walk. It is a 
ounterpart of the S
hr�odingerapproa
h in quantum me
hani
s. The basi
 result is thefollowing lemma.Lemma 7. We have L(n; t) = Z ��� dk2� �ieikp1 + 
os2 k e�i(!kt�kn); R(n; t) = Z ��� dk2� �1 + 
os kp1 + 
os2 k� e�i(!kt�kn);where !k = sin�1 sin kp2 2 [��2 ; �2 ℄.Using the Method of Stationary Phase [4, 5℄, it is possi-ble to derive the asymptoti
 form of the amplitudes fromtheir integral representation, and hen
e also the form of theprobability distribution P (n; t).
Results for semi-infinite and finite Hadamard walksWhile there are several questions one 
ould ask about aboutthe semi-in�nite and �nite Hadamard walks, we will restri
tour attention to the following simple question: What are theexit probabilities of the walks?For the semi-in�nite walk, there is just one exit prob-ability, whi
h is the probability that the measurement ofwhether the parti
le is at lo
ation 0 eventually results inthe answer \yes". Let p1 denote this probability. We haveTheorem 8. p1 = 2=�.This theorem is in sharp 
ontrast with the 
lassi
al 
ase,for whi
h it is well-known that the probability of eventuallyexiting to the left is 1.Now we 
onsider the �nite Hadamard walk. For ea
h n >1, let pn be the probability that the pro
ess eventually exitsto the left, i.e., the measurement in step 2b of the des
riptionof the pro
ess eventually results in \yes". Also de�ne qn tobe the probability that the pro
ess exits to the right.Proposition 9. For all n > 1, pn + qn = 1.The asymptoti
 behavior of pn is as follows.



Theorem 10. limn!1 pn = 1=p2.On
e again, this result is in sharp 
ontrast to the 
lassi
al
ase, for whi
h the probability of exiting from the left is1� 1=n.When 
omparing this situation to the semi-in�nite quan-tum walk, it is interesting to note that 1=p2 > 2=�. Thismeans that for suÆ
iently large n, terminating the walk atlo
ation n a
tually in
reases the probability of rea
hing lo-
ation 0. (Indeed, sin
e p3 is easily shown to be 2=3, thisholds already for the 
ase n = 3.)We are not yet able to derive a 
losed form for pn. We
onje
ture the following.Conje
ture 11. The probabilities pn obey the followingre
urren
e. p1 = 0;pn+1 = 1 + 2 pn2 + 2 pn ; n � 1:
4. TWO-WAY INFINITE TIMED

HADAMARD WALKSWe now analyze in detail the state of a parti
le doing aHadamard walk in the two-way in�nite 
ase. We begin withthe path integral approa
h.
Path integral analysis of the Hadamard walkWe wish to study the amplitudes of jnijRi and jnijLi inthe superposition W tj0ijRi. Sin
e these are real, the 
orre-sponding probabilities are obtained by squaring, and it willsuÆ
e to analyze the amplitudes.To rea
h jnijRi or jnijLi in t steps, there must be ` = t�n2moves left and r = t+n2 (= t� `) moves right. By 
ountingsu
h paths, one gets Lemma 4.This gives the amplitudes of jnijRi and jnijLi for any n.However, formulas (1) and (2) involve the di�eren
e of twonumbers that are both mu
h bigger than the amplitudes.For this reason, they 
annot be dire
tly used to bound theamplitudes.If n is 
lose to 0, a simple manipulation with binomial
oeÆ
ients gives ni
e formulas for jnijRi and jnijLi.Lemma 12. The amplitudes of j0ijRi and j0ijLi after tsteps are:1. 0 if t is odd,2. 12u (�1)u2 �u�1u=2� if t = 2u, u even,3. 12u (�1)u�12 � u�1(u�1)=2� and 12u (�1)u+12 � u�1(u�1)=2� if t =2u, u odd.By Stirling's approximation, � uu=2� � 2up�u . Therefore,the amplitudes of j0ijRi and j0ijLi after t = 2u steps are12u � u�1(u�1)=2� � 12u 2u�1p�u = 12p�u = 1p2�t and the probabilitiesof measuring them are approximately 12�t .However, for an arbitrary n, applying the idea of Lemma12 still gives a di�eren
e of two very large numbers. Tounderstand the asymptoti
s of these sums, one needs a dif-ferent approa
h. We have two approa
hes. The �rst is bytransforming the sum into a re
urren
e relation and solv-ing the re
urren
e. The se
ond is by des
ribing the sum byJa
obi polynomials.

Combinatorial sums and recurrencesConsider the sumsS�;� =Xk  �k! �k!(�1)k (3)and T�;� =Xk  �k! �k + 1!(�1)k (4)By Lemma 4, 
al
ulating 	 is equivalent to 
al
ulating thesesums.We will fo
us on  L(n; t). By Lemma 4, it 
orresponds toS�;� for � = t�n2 �1, � = t+n2 . Using the Gosper-Zeilbergermethod [14, 15, 33℄ for generating re
urren
es from sums ofbinomial 
oeÆ
ients, we obtain the following lemma.Lemma 13. [15℄ We have(� + 2)S�;�+2 = (3� + 4� �)S�;�+1 � (2� + 2)S�;� : (5)Together with Lemma 4, this relates the amplitudes ofjnijLi at time t, jn�1ijLi at time t+1, and jn�2ijLi at timet+ 2. We 
an also obtain a similar (but more 
ompli
ated)re
urren
e that relates S��1;�+1, S�;� and S�+1;��1 (or,equivalently, amplitudes of jn� 1ijRi, jnijRi and jn+1ijRiat time t).
Solving the recurrencesIf we �x �, the re
urren
e (5) be
omes a re
urren
e in onevariable �. The simplest way to solve (5) is by approximat-ing it by a re
urren
e with 
onstant 
oeÆ
ients:(�0 + 2)A�;�+2 = (3�0 + 4� �0)A�;�+1 � (2�0 + 2)A�;� ;where �0, �0 are parti
ular values of � and �. This re-
urren
e 
an be solved in a standard way. The form ofthe solution depends on �0 and �0. If the ratio �0�0 be-longs to the interval [3 � 2p2; 13�2p2 ℄ (whi
h 
orrespondsto �t=p2 � n � t=p2), the solutions are of the forma�2�0 + 2�0 + 2 ��=2 sin(�� + �) (6)where � = ar

os 3�0+4��02p2(�0+1) . However, the error introdu
edby repla
ing � and � by �0 and �0 turns out to be too big.So, this simple approa
h fails, but also suggests a betterapproximationA�;� = a2�=2 sin(��1Xj=� ��;j + �) (7)where ��;j = ar

os 3j+4��2p2(j+1) . The reason why this approxi-mation works is as follows. If we look at the values A�;�+2,A�;�+1 and A�;� , we haveA�;� = a2�=2 sin(�);A�;�+1 = a2(�+1)=2 sin(� + ��;�);A�;�+2 = a2(�+2)=2 sin(� + ��;� + ��;�+1): (8)



where � = �+P��1j=� ��;j . If we 
onsider (6) with a2�=2 and� instead of a and �, we getA�;� = a2�=2 sin(�);A�;�+1 = a2nu=2 �2�0 + 2�0 + 2 � sin(� + ��;�);A�;�+2 = a2(�+2)=2 �2�0 + 2�0 + 2 �2 sin(� + 2��;�): (9)The expressions (8) and (9) are almost the same, ex
eptthat (8) has 2 instead of ( 2�0+2�0+2 ) and ��;� + ��;�+1 insteadof 2��;� . In both of those 
ases, the terms di�er only byO( 1� ). This 
an be used to showLemma 14. Let A be the approximation of the equation(7). If A�;� = S�;� and A�;�+1 = S�;�+1, thenA�;�+2 = S�;�+2 +� (10)where j�j = O( 1� )2(�+2)=2a.Thus, one step of the approximation introdu
es error atmost O( 1� ) of the possible value (2(�+2)=2). By applying theargument of Lemma 14 ����1 times (�rst to A�;�, A�;�+1,A�;�+2, then to A�;�+1, A�;�+2 and A�;�+3 and so on, untilwe get to A�;�), we getLemma 15. Let d < 13�2p2 . If a and � are su
h thatS�;� = A�;� and S�;�+1 = A�;�+1, then, for any � satisfying� < � < d�,jS�;� �A�;� j �  �1 + D� �����1! 2�=2a:where D is a 
onstant that depends on d.Ea
h approximation step has introdu
ed a multipli
ative er-ror fa
tor of (1 + D� ), whi
h gives the total error fa
tor of(1 + D� )����1.Then, we use the method of Lemma 12 to obtain the pre-
ise values of S�;� and S�;�+1 and use S�;� and S�;�+1 todetermine a0 and �.This gives an O(Æ)-good approximation of amplitudes ofjnijLi for �Æt < n < Æt. This approximation 
an be thenused to show that, for any t and � > 0, 
(t) amplitudes ofjnijLi must be at least (1� �) times the amplitude of j0ijLi,i.e., at least (1� �) 1p2�t . This implies Theorem 3.However, Lemma 15 is not suÆ
ient to prove Theorems1 and 2, although, as we see, it is suÆ
ient to show someof their important 
onsequen
es. (In parti
ular, it impliesTheorem 3.) To obtain Theorems 1 and 2, one needs adi�erent approa
h.
Connections to orthogonal polynomialsOur se
ond approa
h relates the sums (3) and (4) to Ja
obipolynomials.The �rst sum is symmetri
 so for it we assume � � �.Then, it 
an be expressed in terms of the Gauss hypergeo-metri
 fun
tion. Using [1, 15.3.4℄ we haveS�;� = 2F1 h��;��1 ;�1i = 2� 2F1 ���; �+ 11 ; 1=2� :Let b = �� �. Then from [1, 15.4.6℄ we see thatS�;� = 2�J(0;b)� :

(Re
all that J(0;b)� denotes the 
onstant term of the degree� Ja
obi polynomial.) Using Lemma 4 we 
an now expressthe wave fun
tion for 
hirality L as follows. When n � tmod 2,  L(n; t) is(�1)(t�n)=2 �8<: 2�n=2�1J(0;n+1)t�n2 �1 ; if 0 � n < t2n=2J(0;�n�1)t+n2 ; if �t � n < 0By similar arguments, we have for � � �T�;� = 2��1J(1;���+1)��1and for � < � T�;� = ��+ 12�J(1;����1)� :Then  R(n; t) is(�1)(t�n)=2 �8<: � t+nt�n� 2�n=2�1J(1;n)t�n2 �1; if 0 � n < t;2n=2�1J(1;�n)t+n2 �1; if �t � n < 0:From these representations of the wave fun
tion we ob-tain Lemma 5 and Theorem 6. Chen and Ismail [7℄ haveanalyzed the asymptoti
s for values of Ja
obi polynomialswhose parameters are linear fun
tions of the degree. Usingtheir ideas, we obtain, after some work, Theorems 1 and 2.(The results as stated in [7℄ have some minor errors. In par-ti
ular, to obtain Theorem 1 one must take t0 in (2.17) tohave the larger absolute value.)
Fourier analysis of the Hadamard walkWe now turn to the S
hr�odinger approa
h for studying quan-tum walks. As mentioned in Se
tion 1, the Hadamard walkhas, due to translational invarian
e, a simple des
ription inthe Fourier domain. We therefore 
ast the problem of timeevolution in this basis, where it 
an easily be solved, and atthe end revert ba
k to the real spa
e des
ription by invert-ing the Fourier transformation. This and the following twosubse
tions represent a preliminary exposition of an analysisof the two-way in�nite timed Hadamard walk to be given inmore detail in [26℄.The dynami
s for 	 in the Hadamard walk is given by thefollowing transformation (
f. Figure 1):	(n; t+ 1)= � 0 01p2 1p2 �	(n� 1; t) + � �1p2 1p20 0 �	(n+ 1; t)= M+	(n� 1; t) +M�	(n+ 1; t);for matri
es M+;M� de�ned appropriately. Sin
e the par-ti
le starts at the origin with 
hirality state right, we havethe initial 
onditions, 	(0; 0) = (0; 1)T, and 	(n; 0) = (0; 0)Tif n 6= 0.With the above formulation, the analysis of the Hadamardwalk redu
es to solving a two dimensional linear re
urren
e.We now show how this re
urren
e may be analyzed.The spatial Fourier transform ~	(k; t) (for k 2 [��; �℄) ofthe wave fun
tion 	(n; t) over Z is given by [11℄:~	(k; t) = Xn 	(n; t) eikn:In parti
ular, we have ~	(k; 0) = (0; 1)T for all k.



From the dynami
s of 	, we may dedu
e the following.~	(k; t+ 1) = Xn (M+	(n� 1; t) +M�	(n+ 1; t)) eikn= eikM+Xn 	(n� 1; t) eik(n�1)+ e�ikM�Xn 	(n+ 1; t) eik(n+1)= �eikM+ + e�ikM�� ~	(k; t):Thus, we have,~	(k; t+ 1) = Mk ~	(k; t) where (11)Mk = eikM+ + e�ikM�: (12)In the 
ase of the Hadamard walk,Mk = 1p2 � �e�ik e�ikeik eik � : (13)(More generally, we have that Mk = �kUT, where �k isthe diagonal matrix with entries e�ik; eik and UT is thetranspose of the unitary matrix U that a
ts on the 
hiralitystate of the parti
le.)The re
urren
e in Fourier spa
e thus takes the simple form~	(k; t+ 1) =Mk ~	(k; t), leading to~	(k; t) =M tk ~	(k; 0): (14)We may 
al
ulate M tk (and thus ~	(k; t)) by diagonalizingthe matrix Mk, whi
h is readily done sin
e it is a 2 � 2unitary matrix. If Mk has eigenve
tors (j�1ki,j�2ki) and 
or-responding eigenvalues (�1k,�2k), we 
an write:Mk = �1k j�1kih�1kj + �2k j�2kih�2kj;and then immediately we obtain the time evolution matrixas: M tk = (�1k)t j�1kih�1kj + (�2k)t j�2kih�2kj: (15)The eigenvalues of Mk are �1k = ei!k and �2k = ei(��!k),where !k 2 [��2 ; �2 ℄ satis�es sin(!k) = sin kp2 . The 
orre-sponding eigenve
tors are also easily 
al
ulated:�1k = 1p2N(k) � e�ikp2 ei!k + e�ik ��2k = 1p2N(� � k) � e�ik�p2 e�i!k + e�ik � ;where the normalization fa
tor is given byN(k) = (1 + 
os2 k) + 
os kp1 + 
os2 k:In the Fourier basis the initial state is represented by~	(k; 0) = (0; 1)T for all k. Using the relations (14) and (15)above, the wave fun
tion at time t may now be written as:~ R(k; t) = 12(1 + 
os kp1 + 
os2 k ) ei!kt+ (�1)t2 (1� 
os kp1 + 
os2 k ) e�i!kt~ L(k; t) = e�ik2p1 + 
os2 k (ei!kt � (�1)te�i!kt)We now invert the Fourier transformation, to return to thebasis in real spa
e. This gives us the representation of thewave fun
tions in real spa
e given in Lemma 7.

Asymptotic form of the wave functionIn the previous subse
tion, we obtained a 
losed form so-lution for the time evolved wave fun
tion of the Hadamardwalk. We now 
onsider the behavior of the wave fun
tionfor large t. Fortunately, the problem of analyzing integralsas in Lemma 7 is 
onsiderably simpli�ed in this asymptoti
limit. We use extensively the Method of Stationary Phase [4℄to extra
t the asymptoti
 properties of the resulting wavefun
tion. This allows us to a

urately derive several usefulresults.The asymptoti
 analysis for  L and  R is essentially thesame. They 
an both be written as a sum of integrals of thetype I(�; t) as below (where � = n=t as usual):I(�; t) = Z ��� dk2� g(k) ei �(k;�) t:Here g(k) is an analyti
, periodi
 fun
tion of period 2� takento be either even or odd, �(k; �) = �!k + �k, and � 2[�1; 1℄. Below, we des
ribe a 
oarse analysis of the behaviorof I as we vary �.First, we 
onsider j�j larger than 1p2 by a 
onstant. Forthis range of �, � does not have any stationary points, andwe 
an use integration by parts to show that it de
ays fasterthan any inverse polynomial in t. Next, we look at thepoints � = 1=p2;�1=p2. At these points, � has a station-ary point of order 2 at k = 0; �, respe
tively, as may readilybe veri�ed. Using the method of stationary phase, we thusget the following leading term for I at these points:I(�1p2 ; t) � g(�)3� p2 �(1=3) �6t �1=3 
os� �p2 t+ �6�I( 1p2 ; t) � g(0)3� r32 �(1=3) �6t �1=3 :Finally, we turn to the interval of most interest to us, [�1p2 +�; 1p2 � �℄. When � lies in this region, � has two stationarypoints k�;�k�, where k� 2 [0; �℄ and
os k� = �p1� �2 :We 
an again employ the method of stationary phase to getthe following dominant term in the expansion of I(�; t):g(k�)q2�t j!00k� j �8<: 2 
os(�(k�; �) t+ �=4) if g is even2i sin(�(k�; �) t+ �=4) if g is oddIt is now straightforward to derive the asymptoti
 expres-sion for 	(n; t), and hen
e also for the probability distribu-tion P (n; t), for jn=tj bounded away from 1=p2. Theorem 2summarizes this 
al
ulation. (In deriving this, it is help-ful to note that � = !k� and � = � � k�. We also have� + �� � = �.)The (approximate) probability distribution P 
omparesvery well with numeri
al results even for small t, as is evi-dent from Figure 2. The bias to the right in the probabilitydistribution plotted in the �gure is an artifa
t of the 
hoi
eof initial 
hirality state (it was 
hosen to be right). If theparti
le begins in the 
hirality state 1p2 (jLi+ ijRi), the dis-tribution at any time 
an be shown to be symmetri
. Indeed,the Hadamard walk is an unbiased walk.



Figure 2: A 
omparison of two probability distributions,one obtained by numeri
al integration of Lemma 7 and theother from an asymptoti
 analysis of the walk. The numberof steps in the walk was taken to be 100. Only the proba-bility at the even points is plotted, sin
e the odd points haveprobability zero.
Properties of the distributionThe net probability of the points n with � between �1=p2+� and 1=p2 � �, where � is an arbitrarily small 
onstant,is 1� 2�� � O(1)t , so the rest of the points do not 
ontributeto any global properties of the distribution. Hen
eforth, werestri
t ourselves to this interval.For the purposes of studying its properties, it is 
onvenientto de
ompose P asP (n; t) = Pslow(n; t) + Pfast(n; t); (16)where Pslow(�t; t) = 1 + ��t j!00k� j (17)is a slowly varying (non-os
illating) fun
tion in �, and Pfastis the remaining (qui
kly os
illating) 
omponent. One 
anshow that any 
ontribution to a moment from the \fast"
omponent Pfast is of lower order in t than the 
ontributionfrom Pslow. In Figure 3, we 
ompare Pslow with P .For example, the 
al
ulation of moments is simpli�ed bythe following observation. Let p(�) = tPslow(�t; t). Then pis a probability density fun
tion over [�1=p2; 1=p2℄: it is
learly non-negative, and we show below that it integratesto 1. This observation allows us to approximate the sumsin the moment 
al
ulations by a Riemann integral, and theerror so introdu
ed is again a lower order term.To see that p(�) integrates to 1, note that ���k (k�; �) =0 = �!0k� + �, soj!00k� j � �!00k� = � d�dk� :

Figure 3: A 
omparison of the distributions P and Pslowfor t = 100. Only the probability at the even points is plotted,and Pslow is s
aled by a fa
tor of 2 be
ause it has support onthe odd points as well. p(�) approx. exa
th�i 1� 1=p2 = 0:293 0:293hj�ji 1=2 0:500h�2i 1� 1=p2 = 0:293 0:293Figure 4: A table of moments 
al
ulated with the ap-proximation by the density fun
tion p(�), whi
h are 
om-pared with exa
t results (obtained by numeri
al integration)with t = 80. As mentioned before, the parti
le has a 
on-stant speed to the right, as indi
ated by its mean position,whi
h is a result of its biased initial state. For an unbiasedinitial state, the mean would be zero.Now,Z 1=p2�1=p2 p(�) d� = 1� Z �1=p21=p2 (1 + �)dk�d� d�= 1� Z �0 �1 + 
os kp1 + 
os2 k� dk= 1;sin
e 
os k=p1 + 
os2 k is anti-symmetri
 about the point�=2.Moments for the density fun
tion p are now readily 
al
u-lated by standard methods from 
omplex analysis. Some ofthese are listed in Figure 4 for 
omparison with numeri
alresults. This gives us the leading term for the moments forthe distribution P .We now look at the mixing behavior of the Hadamardwalk. Figure 3 
learly suggests that the probability distri-bution P is almost uniform over the interval (�t=p2; t=p2),i.e., it spreads in linear time, quadrati
ally faster than the
lassi
al random walk. We argue this formally below.Re
all that the Æ-mixing time (�Æ) of a randomized pro-




ess is de�ned as the �rst time t su
h that the distributionat time t is at total variation distan
e (whi
h is half the `1distan
e) at most Æ from the uniform distribution. We 
laimthat there is a 
onstant Æ < 1 su
h that at time t, P is Æ-
lose to the uniform distribution on the integer points be-tween �t=p2. For 
lassi
al random walks, the 
orrespond-ing mixing time is quadrati
 in t.In order to show that the Hadamard walk is \mixed" attime t (in the sense des
ribed above), it suÆ
es to show thata 
onstant fra
tion � > 0 of the points in the said intervalhave probability between 
=p2 t and 1=p2 t for a 
onstant
 > 0. A straightforward 
al
ulation shows that this impliesthat the `1 distan
e from uniform over [�t=p2; t=p2℄ is atmost 2(1� �
), so that Æ = 1� �
 < 1 is a 
onstant.As in the pre
eding dis
ussion, we restri
t ourselves to theinterval where � 2 [�1=p2 + �; 1=p2� �℄ (with � 
hosen tobe a suitable 
onstant) su
h that P (�; t) is at most 1=p2twithin the interval. Re
all that the probability mass withinthis interval is 1 � 2�� � O(1)t , whi
h is a 
onstant greaterthan 0. Clearly, this 
annot hold unless at least a 
onstantfra
tion � = 1� 2�� �
 of the points within this interval haveprobability at least some 
onstant 0 < 
 < 1� 2�� over p2 t.This proves Theorem 3, whi
h shows of the mixing natureof the Hadamard walk.
5. SEMI-INFINITE AND FINITE

HADAMARD WALKSNow we turn to the 
ase where a parti
le does a Hadamardwalk in the presen
e of one or two absorbing boundaries.For the semi-in�nite (one boundary) 
ase, note that theprobability p1 may be expressed asp1 =Xt�1 

(�0yesW )tj1ijRi

2 :(Renormalizations do not appear in this expression be
ausewe are 
al
ulating an un
onditional probability.) The sumwill be evaluated by 
ounting paths.Let At be the set of t-tuples (a1; : : : ; at) 2 f�1; 1gt forwhi
h (i) Pi�j ai � 0, for all j < t, and (ii) Pi�t ai = �1.The set At is in one-to-one 
orresponden
e with the set ofall paths starting in state j1ijRi and entering lo
ation 0 forthe �rst time at time t (ea
h ai indi
ates (�1)di for di thedire
tion after i appli
ations of W ). Let A+t denote thesubset of At for whi
h#fi j 1 � i < t; ai = ai+1 = �1gis even and let A�t denote the subset of At for whi
h thisnumber is odd. Now, the amplitude asso
iated with ea
hpath in A+t is 2�t=2, and the amplitude asso
iated with ea
hpath in A�t is �2�t=2. It follows thatp1 =Xt�1 �# �A+t ��# �A�t ��2 2�t: (18)We will evaluate the sum in (18) by de�ning a generatingfun
tion for # �A+t ��# �A�t �. Letf(z) =Xt�1 �# �A+t ��# �A�t �� zt:

The fun
tion f(z) obeys the equationf(z) = z � z �zf(z) + (zf(z))2 + (zf(z))3 + � � � �= z � z2f(z)1� zf(z) ; (19)whi
h follows from the fa
t that �z(zf(z))k is a generat-ing fun
tion similar to f , but restri
ted to paths that passthrough lo
ation 1 exa
tly k times, k � 1. Solving for f(z)we obtain f(z) = 1 + 2z2 �p1 + 4z42z : (20)Equation (20) is similar in form to the generating fun
tionfor the Catalan numbers. We have# �A+t ��# �A�t � = 8<: 1 t = 1(�1)k+1Ck t = 4k + 30 otherwisewhere Ck = 1k+1�2kk � is the kth Catalan number. Thusp1 = 1=2 + (Xk�0C2k 2�4k)=8:Using indu
tion, it is straightforward to prove thatXk�N C2k 2�4k = (16N3 + 36N2 + 24N + 5)C2N 2�4N � 4;and hen
e p1 = 12 + 18 �16� � 4� = 2� :Next, we 
onsider the 
ase of two absorbing boundaries.We show that pn, the probability of exit to the left for thewalk on f1; : : : ; n � 1g, has the limiting value 1=p2. Theidea is to express pn as an os
illatory integral, whose limitis a two-dimensional integral we 
an evaluate exa
tly.As in the semi-in�nite 
ase, we 
ount paths. De�ne A+tand A�t as above, and let A+t;n and A�t;n denote the subsetsof A+t and A�t , respe
tively, for whi
h paths are restri
tedto lo
ations 1; : : : ; n � 1 before rea
hing lo
ation 0 on thelast step. De�ningfn(z) =Xt�0 �# �A+t;n��# �A�t;n�� zt; (21)we have for n > 1 thatpn =Xt�0 �# �A+t;n��# �A�t;n��2 2�t = (fn � fn)(1=2);where � denotes the Hadamard produ
t [31, p. 157℄. Thegenerating fun
tions fn satisfyfn(z) = z�1� 2zfn�11� zfn�1 � (22)with f1(z) = 0. The reasoning is similar to the semi-in�nite
ase. We will let z = ei�=p2 in the analysis that follows.
Integrals for exit probabilitiesLemma 16. We havepn = 2� Z �=20 jfn(ei�=p2)j2 d�:



Proof. By the integral representation of the Hadamardprodu
t [31, p. 157℄ we havepn = (fn � fn)(1=2) = 12� Z 2�0 jfn(ei�=p2)j2 d�: (23)Using (22) we see that fn is odd and satis�es fn(�z) = fn(z).Using these symmetries we get the result.Lemma 17. For n � 1 and jzj = 1=p2, we have jfnj � 1.Proof. It is more 
onvenient to work with gn = zfn(z=p2),whi
h satis�es the re
urren
e relationgn = z2 �1�p2gn�1p2� gn�1 � (24)with g1(z) = 0. The mapw 7! 1�p2wp2�wmaps the unit disk to itself. (Observe that it maps the unit
ir
le to itself and apply the maximum modulus prin
iple.)Using indu
tion on n, (24) implies that jgnj � 1 on the unitdisk.Lemma 18. Let�1;2 = (2z2 � 1)�p1 + 4z42 (25)(subs
ript 1 for +; prin
ipal bran
h taken) and�1;2 = (2z2 + 1)�p1 + 4z42z2 (26)(ditto). Then for n � 1 we have (with m = n� 1)hn := fnz = �1�2 (�1=�2)m � 1�2(�1=�2)m � �1 :Proof. Let 'z denote the M�obius transformation w 7!2z2w�1z2w�1 , so that hn is the m-th iterate of 'z, starting from0. By diagonalizing the matrix of 'z, we obtain a formulafor this. (This te
hnique 
omes from [28, p. 182℄.)Lemma 19. We have:(i) j�1=�2j = 1 for 0 < � < �=4;(ii) j�1=�2j < 1 for �=4 < � < �=2;(iii) j�2j2 = 2 for �=4 < � < �=2; and(iv) �1=�2 = 1 + 2 
os 2� + 2 
os �p2 
os 2� 2 Rfor 0 < � < �=4.Proof. We prove (i) and (ii) together. From the relationja+ bj2 = jaj2 + jbj2 + 2<(�ab), we �ndj�1j2 � j�2j2 = 4<�(2z2 � 1)p1 + 4z4� :Sin
e z = ei�=p2, we have�(2z2 � 1)p1 + 4z4�2 = (e�2i� � 1)2(1 + e4i�)= 8(
os2 � � 1=2)(
os2 � � 1):This is negative for 0 < � < �=4 and positive for �=4 <� < �=2. Hen
e its square root is pure imaginary in the

�rst 
ase, making j�1j2 � j�2j2 = 0. In the se
ond 
ase,the square root is a real number that we determine to benegative, making j�1j2 � j�2j2 < 0.Now 
onsider (iii). Sin
e j2z2j = 1 it will suÆ
e to 
on-sider � = (2z2 + 1)�p1 + 4z4and show that ��� = 2. Substituting z = ei�=p2 and ratio-nalizing the denominator, we �nd that2=� = 1 + e�2i� + e�2i�p1 + e4i�whereas �� = 1 + e�2i� �p1 + e4i�:These are equal pre
isely whene�2i�p1 + e4i� = �p1 + e4i�;whi
h is true for �=4 < � < 3�=4.To prove (iv), observe thata+ bi := �1�2 = 2z2 + 1 +p1 + 4z42z2 + 1�p1 + 4z4= 2z2 + 12z2 + 1 +�1 + 12z2�p1 + 4z4:Sin
e 2z2 = e2i� and we are taking the prin
ipal bran
h ofthe square root this is(e2i� + e�2i�) + 1 + (1 + e�2i�)ei�pe2i� + e�2i�= 1 + 2 
os 2� + 2 
os �p2 
os 2�:Sin
e 0 � 2� � �=2, this is real, soa = 1 + 2 
os 2� + 2 
os �p2 
os 2�; b = 0:
A nonlinear Riemann-Lebesgue lemmaFor a smooth fun
tion on the 
ylinder T = fjzj = 1g �fjuj � �g, the following result is physi
ally plausible. Ourappli
ation motivates the pre
ise assumptions.Lemma 20. Let F : T ! R be C2 for juj < �, boundedwhen z = eiu, with radial averageG(u) := 12� Z 2�0 F (ei�; u)d�bounded and Riemann integrable on juj < �. Thenlimm!1 Z ��� F (eimu; u)du = Z ��� G(u)du:Proof: Choose � > 0. We let a = ��, b = � and h = 2�=mso that the m intervalsIk = [a+ kh; a+ (k + 1)h℄; k = 0; : : : ;m� 1
over [a; b℄. Let J� = [a+ �; b� �℄. Sin
e F is bounded and[a; b℄� J� is 
overed by 2�=h+O(1) intervals we haveZ ba F (eimu; u)du



= XIk�J� ZIk F (eimu; u)du+O(�+ 1=m) (27)If u 2 [
; 
+ h℄ � J� thenF (eimu; u)� F (eimu; 
) = Z u
 �F�� (eimu; �) d� = O(h):ThereforeZ 
+h
 F (eimu; u)du = Z 
+h
 F (eimu; 
)du+O(1=m2)= 1m Z 2�0 F (ei�; 
)d�+O(1=m2):Substituting this in (27) we getZ ba F (eimu; u)du = 2�m XIk�J�G(a+ kh) +O(�+ 1=m):The sum is 2�=h + O(1) evaluation points shy of being aRiemann sum, so by our assumption on G,lim supm!1 Z ba F (eimu; u)du � Z ba G(u)du+O(�):Similarly,lim infm!1 Z ba F (eimu; u)du � Z ba G(u)du�O(�):Sin
e � is arbitrary the result follows.
The limiting exit probability.In this se
tion we prove Theorem 10. It follows from thetwo lemmas below.Lemma 21. We havelimn!1 pn = 12 + 4� Z �=40 d��1=�2 + 1 :Proof. From Lemma 16 we have, sin
e jfnj is even,pn = 1� Z �=4��=4 jfnj2d� + 1� Z �=2�=4 jfn=zj2d�: (28)By Lemma 17 and (ii)-(iii) of Lemma 19, the se
ond termhas the limit 1/2 as n!1.In the �rst term, we 
onsider � to be a fun
tion of u =arg(�1=�2) (this is real by Lemma 19), 
hoosing the bran
hthat maps 0 to 0. This gives1� Z �=4��=4 jfnj2d� = 2� Z ��� ���� (�1=�2)m � 1�2(�1=�2)m � �1 ����2 d�dudu;with m = n� 1. Applying Lemma 20 withF (z; u) = j(z � 1)=(�2z � �1)j2 d�=duand undoing the substitution, we �nd its limit is4�2 Z �=40 d� Z 2�0 1� 
os �j�2ei� � �1j2 d�= 4�2 Z �=40 d�j�2j2 Z 2�0 1� 
os �(�1=�2 � 
os �)2 + (sin�)2 d�:Now apply Poisson's integral formula [31, p. 124℄ to the innerintegral and observe that �1�2 = 2.

Lemma 22. We haveZ �=40 d��1=�2 + 1 = �4 � 1p2 � 12� :Proof. Use of (iv) of Lemma 19, followed by an orgy ofsubstitutions ( = 2�, then t = tan =2, � = sin�1 t, �nallyu = tan�=2) redu
es the integral to an ar
tangent. We omitthe details.
6. CONCLUSIONIn this paper we have de�ned and studied quantum walkson one-dimensional latti
es, and noted several striking dif-feren
es from 
lassi
al random walks.There are many interesting questions regarding quantumwalks that we leave open. In parti
ular, for the 
ase ofquantum walks with absorbing boundaries, a more 
ompleteanalysis remains to be done. We have restri
ted our atten-tion to the question of determining exit probabilities, andeven here there are apparently diÆ
ult problems remainingsu
h as proving Conje
ture 11 (assuming it is true).It is yet un
lear whether quantum walks are interestingfrom an algorithmi
 point of view. Any speed-up of a known
lassi
al algorithm based on random walks (su
h as thosementioned in Se
tion 1) seems to involve the analysis ofquantum walks on graphs mu
h more 
omplex than the line.The re
ent work of [2℄ represents a step forward in this di-re
tion.
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